IP Filter Based Firewalls HONTO

Brendan Conoboy <synk@swcp.com>
Erik Fichtner <emf@obfuscation.gr

Fri Mar 122:29:33 EST 2002

Abstract: This document is intended to introduce aneer to the IP Filter firgalling package
and, at the same time, teach the user some basic fundamentals of geabictfasgn.

1. Introduction

IP Filter is a great little firgall package. It does just aboutverything other free fineals (ipfwadm,
ipchains, ipfw) do, bt it's dso portable and does neat $tiife others dom’ Thisdocument is intended to
male sme cohesie ense of the sparse documentation presentifahle for ipfilter Futhermore, this
document will also seeves documentation for syntatically compatible patkilters (notablypf) and, wher
evea applicable, will point out apimportant diferences; hwever this document is specifically tgted at
the rules language and syntax, and is not intended to be platform sp8oifie prior &miliarity with
paclet filtering will be useful, hoever too much &miliarity may mak this document a aste of your time.
For greater understanding of fisells, the authors recommend readiBgilding Internet krewalls, Chap-
man & Zwicky, O'Reilly and Associates; antiCP/IP lllustrated, \dlume 1 Stevens, Addison-Vésley.

1.1. Disclaimer

The authors of this document are not responsible fpdamages incurred due to actionsaalbased
on this document. This document is meant as an introductiouiltbnig a firavall based on IP-Filter If
you do not feel comfortable taking responsibility for youncactions, you should stop reading this docu-
ment and hire a qualified security professional to install yowvdiréor you.

1.2. Copyright

Unless otherwise stated, MO documents are cgpighted by their respeet aithors. HQVTO
documents may be reproduced and distat in whole or in part, in gmedium plysical or electronic, as
long as this cogright notice is retained on all copies. Commercial redigtidln is allaved and encour
aged; havever, the authors wuld like to be notified of ary such distrilutions.

All translations, dewiative works, or aggrgate works incorporating anHOWTO documents must be
covered under this cgpight notice. That is, you may not produce a detive work from a HQVTO and
impose additional restrictions on its distriilon. Exceptions to these rules may be granted under certain
conditions; please contact the WO coordinator

In short, we wish to promote dissemination of this information through ag channels as possible.
However, we do wish to retain cogright on the HOVTO documents, and awld like to be rotified of ary
plans to redistribte the HOVTOs.

1.3. Where to obtain the important pieces
The oficial IPF homepage is athttp://coombs.anu.edu.au/ avalon/ip-filteimI>
The BSD licensed compatible patKilter, pf, is at:<http://wwwbenzedrinex/pthtml>
The most up-to-dateevsion of this document can be found<dittp://wwwobfuscation.ay/ipf/>

2. BasicFirewalling

This section is designed tarhiliarize you with ipfilters syntax, and firevall theory in general. The
features discussed here are featuresllybond in ary good firavall package. This section will gie you a
good foundation to ma&kreading and understanding the adwed sectionery easy It must be emphasized
that this section alone is not enough tidda good firevall, and that the adanced section really is required
reading for apbody who vants to bild an efective scurity system.

2.1. ConfigFile Dynamics, Order and Pecedence

IPF (IP Filter) has a config file (as opposed tq sayning some command @g and agin for each
new rule). Theconfig file drips with Unix: Theres ane rule per line, the "#" mark denotes a comment, and
you can hee a ule and a comment on the same lifixtraneous whitespace is alled, and is encouraged
to keep the rules readable.

2.2. BasicRule Processing

The rules are processed from top to bottom, each one appended after. ahoiheuite simply
means that if the entirety of your config file is:

block in all
pass in all

The computer sees it as:

block in all
pass in all

Which is to say that when a pa&ticomes in, the first thing IPF applies is:

block in all

Should IPF deem it necessary towaan to the net rule, it would then apply the second rule:

pass in all

At this point, you might \ant to ask yourself "auld IPF m@e m to the second rule?'f you're
familiar with ipfwadm or ipfw you probably wn’t ask yourself this.Shortly after you will become bwil-
dered at the weird ay paclets are alays getting denied or passed whenytdeouldnt. Mary packet fil-
ters stop comparing pagts to rulesets the moment the first match is made; IPF is not one of them.

Unlike the other pacddt filters, IPF keps a flag on whether or nossigping to pass the paek
Unless you interrupt the fig IPF will go through the entire ruleset, making its decision on whether or not
to pass or drop the paskbased on the last matching rulEhe scene: IP Filtes’an duty. It's been been
scheduled a slice of CPU timé.has a checkpoint clipboard that reads:

block in all
pass in all

A packet comes in the inteate and is time to go to wrk. Ittakes a look at the paek it tales a look at
the first rule:

block in all

"So far | think I will block this packt" says IPF It takes a look at the second rule:

pass in all

"So far | think | will pass this pa&k" says IPF It takes a look at a third ruleThere is no third rule, so it
goes with what its last mettion was, to pass the pastkonwvard.

It's a good time to point out thawen if the ruleset had been

block in all
block in all
block in all
block in all
pass in all
that the paost would still hare gone through.There is no cumulaté dfect. Thelast matching rule alays

takes precedence.

2.3. Controlling Rule Processing

If you have experience with other paek filters, you may find this layout to be confusing, and you
may be speculating that there are problems with portability with other filters and speed of rule matching.
Imagine if you had 100 rules and most of the applicable ones were the first 10. dhktdeva terrible
overhead for gery paclet coming in to go through 100 rulegesy time. Fortunately there is a simple
keyword you can add to gmrule that maks it tale action at that matchThat keyword isquick .

Heres a nmodified copy of the original ruleset using tlopiick keyword:
block in quick all

pass in all

In this case, IPF looks at the first rule:

block in quick all

The packt matches and the search &0 The packt is epunged without a peeplhere are no notices,
no logs, no memorial servic&€ake will not be sered. Sowhat about the ne rule?

pass in all

This rule is neer encountered. Itould just as easily not be in the config file at dalhe sweeping
match ofall and the terminal éyword quick from the preious rule mak certain that no rules are fol-
lowed aftervard.

Having half a config file laid to aste is rarely a desirable staten the other hand, IPF is here to
block paclets and as configured,sttbing a \ery good job Nonetheless, IPF is also here to let some pack-
ets through, so a change to the ruleset toenttak possible is called for

2.4. Basidfiltering by IP address

IPF will match packts on may criteria. Theone that we most commonly think of is the IP address.
There are some blocks of address space from which we shaddgee trafic. Onesuch block is from
the unroutable netovks, 192.168.0.0/16 (/16 is the CIDR notation for a netmask. may be moredmil-
iar with the dotted decimal format, 255.255.0LBF accepts both)lf you wanted to block 192.168.0.0/16,

this is one &y to do it:

block in quick from 192.168.0.0/16 to any
pass in all

Now we havea less stringent ruleset that actually does something fokeiss imagine a paat comes in
from 1.2.3.4.The first rule is applied:

block in quick from 192.168.0.0/16 to any
The packt is from 1.2.3.4, not 192.168.*.*, so there is no mafide second rule is applied:

pass in all

The packt from 1.2.3.4 is definitely a part afl , so0 the packt is sent to whater it's destination hap-
pened to be.

On the other hand, suppose wevdha @cket that comes in from 192.168.1.Zhe first rule is
applied:

block in quick from 192.168.0.0/16 to any

Theres a match, the padait is dropped, and thatthe end. Again, it doesrt move b the second rule
because the first rule matches and containquiek keyword.

At this point you can tild a fairly extensve st of definitve addresses which are passed or béutk
Since weve dready started blocking prate address space from entering ounfalg let's take care of the
rest of it:

block in quick from 192.168.0.0/16 to any
block in quick from 172.16.0.0/12 to any
block in quick from 10.0.0.0/8 to any
pass in all

The first three address blocks are some of thvetpriP spacg.

2.5. Controlling Your Interfaces

It seems wry frequent that companiesveainternal netwrks before thgwant a link to the outside
world. In fact, it's probably reasonable to say tlzathe main reason people considerviialls in the first
place. Themachine that bridges the outsidend to the inside wrld and vice ersa is the routerWhat
separates the router fromyasther machine is simple: It has more than one iaterf

Every paclet you recaie mmes from a netark interface; gery paclet you transmit goes out a net-
work interface. Sayyour machine has 3 intades,l00 (loopback),xI0 (3com ethernet), antunO
(FreeBSD$ generic tunnel intedice that PPP uses)tbyou dont want packts coming in on théun0
interface?

block in quick on tunO all

pass in all
In this case, then keyword means that that data is coming in on the namedanterflfa packet comes
inon tun0 , the first rule will block it. If a paclet comesn on lo0 orinon xl0 , the first rule
will not match, the second rule will, the patkvill be passed.

2.6. UsingIP Addr ess and Interface ©gether

It's an odd state of dhirs when one decides it best tovhahetun0 interface up, bt not allav any
data to be receed from it. The more criteria the fiveell matches aginst, the tighter (or looser) the fire-
wall can become.Maybe you vant data frontunO , but not from 192.168.0.0/167This is the start of a
powerful firewall.

block in quick on tun0 from 192.168.0.0/16 to any
pass in all

1 See rfc1918 akhttp://wwwfags.og/rfcs/rfc1918.html>and<http://wwwietf.org/internet-dafts/daft-manning-dsua-06.txt>

Compare this to our pvus rule:

block in quick from 192.168.0.0/16 to any

pass in all
The old vay, dl traffic from 192.168.0.0/16, gerdless of inteidice, vas completely blodd. Thenew
way, usingon tun0 means that i only blocked if it comes in on thun0 interface. Ifa packet arrved
on thexl0 interface from 192.168.0.0/16, itould be passed.

At this point you can tild a fairly extensve st of definitve addresses which are passed or béutk
Since weve dready started blocking prate address space from entertngO , let’s take care of the rest of
it:

block in quick on tun0 from 192.168.0.0/16 to any

block in quick on tunO from 172.16.0.0/12 to any

block in quick on tunO from 10.0.0.0/8 to any

block in quick on tun0 from 127.0.0.0/8 to any

block in quick on tunO from 0.0.0.0/8 to any

block in quick on tunO from 169.254.0.0/16 to any

block in quick on tun0 from 192.0.2.0/24 to any

block in quick on tunO from 204.152.64.0/23 to any

block in quick on tunO from 224.0.0.0/3 to any

pass in all
You've dready seen the first thrédock s, kut not the restThe fourth is a lagely wasted class-A netwk
used for loopbackMuch softvare communicates with itself on 127.0.0.1 so blocking it fromxaerreal
source is a good idedrlhe fifth, 0.0.0.0/8, should wer be ®en on the internetMost IP stacks treat
"0.0.0.0/32" as the deftilt catevay, and the rest of the 0.*.*.* netark gets handled strangely bgrious
systems as a byproduct ofvinoouting decisions are madeyou should treat 0.0.0.0/8 just ¥127.0.0.0/8.
169.254.0.0/16 has been assigned by theAAbr use in auto-configuration when systemseheot yet
been able to obtain an IP address via DHCP or the IMost notably Microsoft Wndows will use
addresses in this range if yhare set to DHCP and cannot find a DHCP serv192.0.2.0/24 has also been
resened for use as anxample IP netblock for documentation authowe gecifically do not use this
range as it wuld cause confusion when we tell you to block it, and thus all xamgles come from
20.20.20.0/24. 204.152.64.0/#&3an odd netblock resezet by Sun Microsystems for pate cluster inter
connects, and blocking this is up to yowmnojudgement. Lastly, 224.0.0.0/3 wipes out the "Class D and
E" networks which is used mostly for multicast fraf although further definition of "Class E" space can be
found in RFC 1166.

Theres a \ery important principle in paek filtering which has only been alluded to with thevgig
network blocking and that is this: When you kntheres certain types of data that only comes from certain
places, you setup the system to onlywltbat kind of data from those placds. the case of the unroutable
addresses, you knothat nothing from 10.0.0.0/8 should be g ontun0 because you ka ro way to
reply to it. It's an illegitimate packt. Thesame goes for the other unroutables as well as 127.0.0.0/8.

Many pieces of softw@re do all their authentication based upon the gt&ckriginating IP address.
When you hee an internal netwrk, say 20.20.20.0/24, you kmdhat the only trdfc for that internal net-
work is going to come éthe local ethernetShould a padkt from 20.20.20.0/24 amé ove a FPP dialup,
it's perfectly reasonable to drop it on the floar put it in a dark room for interr@gion. Itshould by no
means be allwed to get to its final destinatioYou can accomplish this particularly easily with what you
already knav of IPE The nav ruleset vould be:

block in quick on tunO from 192.168.0.0/16 to any
block in quick on tunO from 172.16.0.0/12 to any
block in quick on tun0 from 10.0.0.0/8 to any
block in quick on tunO from 127.0.0.0/8 to any
block in quick on tunO from 0.0.0.0/8 to any

block in quick on tun0 from 169.254.0.0/16 to any
block in quick on tunO from 192.0.2.0/24 to any
block in quick on tunO from 204.152.64.0/23 to any
block in quick on tun0 from 224.0.0.0/3 to any
block in quick on tun0 from 20.20.20.0/24 to any
pass in all

2.7. Bi-Directional Filtering; The "out" K eyword

Up until nav, we've keen passing or blocking inbound fraf To darify, inbound trdic is all trafic
that enters the fireall on ary interface. Cowersely, outbound trdfic is all trafic that lees on any inter
face (whether locally generated or simply passing throughjs means that all paets coming in are not
only filtered as thg enter the firevall, they’re also, filtered as tlyeexit. Thusfar theres been an implied
pass out all that may or may not be desiragléust as you may pass and block incominditsafou
may do the same with outgoing fiaf

Now that we knav theres a way to filter outbound paeéits just lile inbound, its yp to us to find a
concevable use for such a thingdne possible use of this idea is &k spoofed paeks from &iting your
own network. Insteadf passing aptraffic out the routeryou could instead limit permitted tfef to pack-
ets originating at 20.20.20.0/2%pu might do it like this:

pass out quick on tunO from 20.20.20.0/24 to any

block out quick on tunO from any to any
If a packet comes from 20.20.20.1/32, it gets sent out by the first Hulepaclet comes from 1.2.3.4/32 it
gets blockd by the second.

You can also mak smilar rules for the unroutable addresséfssome machine tries to route a patk
through IPF with a destination in 192.168.0.0/16ywbt drop it? The worst that can happen is that yibu’
spare yourself some bandwidth:

block out quick on tun0 from any to 192.168.0.0/16

block out quick on tun0 from any to 172.16.0.0/12

block out quick on tunO from any to 10.0.0.0/8

block out quick on tun0 from any to 0.0.0.0/8

block out quick on tunO from any to 127.0.0.0/8

block out quick on tun0 from any to 169.254.0.0/16

block out quick on tun0 from any to 192.0.2.0/24

block out quick on tunO from any to 204.152.64.0/23

block out quick on tunO from any to 224.0.0.0/3

block out quick on tun0 from 120.20.20.0/24 to any
In the narravest vievpoint, this doest’enhance your securitylt enhances werybody elses scurity, and
that’s a rice thing to do.As another vigpoint, one might suppose that because nobody can send spoofed

paclets from your site, that your site has leakig as a relay for craeks, and as such is less of ayédr

You'll lik ely find a number of uses for blocking outbound p#sk Onehing to alvays keep in mind
is that in and out directions are in reference to younéitenever any ather machine.

2.8. LoggingWhat Happens; The "log" K eyword

Up to this point, all blookd and passed pagtk hae keen silently bloc&d and silently passedJsu-
ally you want to knav if you're being attacéd rather than wender if that firgvall is really buying you ag
added benefitsWhile | wouldn't want to log gery passed pa&ht, and in some casegegy blocked packt,
| would want to knav about the blockd paclkts from 20.20.20.0/24To do this, we add théog keyword:

block in quick on tun0 from 192.168.0.0/16 to any
block in quick on tun0 from 172.16.0.0/12 to any
block in quick on tunO from 10.0.0.0/8 to any
block in quick on tun0 from 127.0.0.0/8 to any
block in quick on tun0 from 0.0.0.0/8 to any

block in quick on tunO from 169.254.0.0/16 to any
block in quick on tun0 from 192.0.2.0/24 to any
block in quick on tun0 from 204.152.64.0/23 to any
block in quick on tunO from 224.0.0.0/3 to any
block in log quick on tun0 from 20.20.20.0/24 to any

pass in all

So far, our firewall is pretty good at blocking paeks coming to it from suspect placest theres gill more
to be done.For one thing, we'e accepting paelts destined amvhere. Onedhing we ought to do is mak
sure packts to 20.20.20.0/32 and 20.20.20.255/32 get dropped on the Tioalo otherwise opens the
internal netwark for a smurf attackThese tw lines would prevent our typothetical netwrk from being
used as a smurf relay:

1 This can, of course, be changed by using -DIFER_DERULT_BLOCK when compiling ipfilter on your system.

block in log quick on tunO from any to 20.20.20.0/32
block in log quick on tun0 from any to 20.20.20.255/32

This brings our total ruleset to look something lihis:

block in quick on tunO from 192.168.0.0/16 to any
block in quick on tun0 from 172.16.0.0/12 to any
block in quick on tun0 from 10.0.0.0/8 to any

block in quick on tunO from 127.0.0.0/8 to any
block in quick on tun0 from 0.0.0.0/8 to any

block in quick on tun0 from 169.254.0.0/16 to any
block in quick on tunO from 192.0.2.0/24 to any
block in quick on tun0 from 204.152.64.0/23 to any
block in quick on tun0 from 224.0.0.0/3 to any

block in log quick on tunO from 20.20.20.0/24 to any
block in log quick on tunO from any to 20.20.20.0/32
block in log quick on tun0 from any to 20.20.20.255/32
pass in all

2.9. CompleteBi-Dir ectional Filtering By Interface

So far we hae aly presented fragments of a complete rule¥éhen youre actually creating your
ruleset, you should setup rules foewry direction and eery interface. Thealefault state of ipfilter is to pass
paclets. lItis as though there were arvigible rule at the lgnning which statepass in all and
pass out all . Rather than rely on some @eft behaiour, make everything as specific as possible,
interface by interdice, until gery base is ceered.

First well start with theloO interface, which wants to run wild and freeSince these are programs
talking to others on the local system, go ahead aeg K unrestricted:

pass out quick on lo0
pass in quick on lo0

Next, theres the xI0 interface. Lateion well begin placing restrictions on thd0 interface, lt to start
with, we'll act as thoughwerything on our local netark is trustvorthy and give it much the same treat-
ment adoO :

pass out quick on xI0
pass in quick on xI0

Finally, theres thetunO interface, which we/e keen half-filtering with up until ne:

block out quick on tun0 from any to 192.168.0.0/16
block out quick on tun0 from any to 172.16.0.0/12
block out quick on tunO from any to 127.0.0.0/8
block out quick on tunO from any to 10.0.0.0/8

block out quick on tun0 from any to 0.0.0.0/8

block out quick on tun0 from any to 169.254.0.0/16
block out quick on tunO from any to 192.0.2.0/24
block out quick on tun0 from any to 204.152.64.0/23
block out quick on tunO from any to 224.0.0.0/3
pass out quick on tunO from 20.20.20.0/24 to any
block out quick on tun0 from any to any

block in quick on tun0 from 192.168.0.0/16 to any
block in quick on tunO from 172.16.0.0/12 to any
block in quick on tun0 from 10.0.0.0/8 to any

block in quick on tun0 from 127.0.0.0/8 to any
block in quick on tunO from 0.0.0.0/8 to any

block in quick on tun0 from 169.254.0.0/16 to any
block in quick on tun0 from 192.0.2.0/24 to any
block in quick on tunO from 204.152.64.0/23 to any
block in quick on tun0 from 224.0.0.0/3 to any

block in log quick on tun0 from 20.20.20.0/24 to any

block in log quick on tunO from any to 20.20.20.0/32

block in log quick on tun0 from any to 20.20.20.255/32

pass in all
This is a pretty significant amount of filtering alreagsotecting 20.20.20.0/24 from being spoofed or
being used for spoofing-uture &les will continue to skoone-sideness,ut keep in mind that i for
brevity's sake, and when setting up youwn ruleset, adding rules fovery direction and eery interface is

necessary

2.10. Contmwlling Specific Piotocols; The "proto” K eyword

Denial of Service attacks are as rampantudfeboverflow exploits. Mary denial of service attacks
rely on glitches in the OS'TCP/IP stack.Frequently this has come in the form of ICMP patk. Wly
not block them entirely?

block in log quick on tunO proto icmp from any to any

Now any ICMP trafic coming in fromtunO will be logged and discarded.

2.11. Filtering ICMP with the "icmp-type" K eyword; Mer ging Rulesets

Of course, dropping all ICMP isireally an ideal situationWhy not drop all ICMP?Well, because
it's wseful to hae partially enabled.So maybe you ant to leep some types of ICMP tfiafand drop other
kinds. Ifyou want ping and traceroute toovk, you need to let in ICMP types 0 and Btrictly speaking,
this might not be a good ideaythf you need to weigh security @gst conenience, IPF lets you do it.

pass in quick on tun0 proto icmp from any to 20.20.20.0/24 icmp-type 0

pass in quick on tunO proto icmp from any to 20.20.20.0/24 icmp-type 11
Remember that ruleset order is importaBince wefe doing gerything quick we must hae aur pass es
before outblock s, so we really ant the last three rules in this order:

pass in quick on tunO proto icmp from any to 20.20.20.0/24 icmp-type 0
pass in quick on tun0 proto icmp from any to 20.20.20.0/24 icmp-type 11
block in log quick on tunO proto icmp from any to any
Adding these 3 rules to the anti-spoofing rules is a bitytri€ne error might be to put thewm@CMP rules

at the bginning:

pass in quick on tunO proto icmp from any to 20.20.20.0/24 icmp-type 0
pass in quick on tun0 proto icmp from any to 20.20.20.0/24 icmp-type 11
block in log quick on tunO proto icmp from any to any

block in quick on tun0 from 192.168.0.0/16 to any

block in quick on tun0 from 172.16.0.0/12 to any

block in quick on tunO from 10.0.0.0/8 to any

block in quick on tun0 from 127.0.0.0/8 to any

block in quick on tun0 from 0.0.0.0/8 to any

block in quick on tunO from 169.254.0.0/16 to any

block in quick on tun0 from 192.0.2.0/24 to any

block in quick on tun0 from 204.152.64.0/23 to any

block in quick on tunO from 224.0.0.0/3 to any

block in log quick on tun0 from 20.20.20.0/24 to any

block in log quick on tunO from any to 20.20.20.0/32

block in log quick on tunO from any to 20.20.20.255/32

pass in all
The problem with this is that an ICMP type 0 patckom 192.168.0.0/16 will get passed by the first rule,
and neer blocked by the fourth rule Also, since weaquick ly pass an ICMP ECHO_REFL(type 0) to
20.20.20.0/24, wek just opened oursedg back up to a nasty smurf attack and nullified those last tw

block rules.Oops. D avoid this, we place the ICMP rules after the anti-spoofing rules:

block in quick on tun0 from 192.168.0.0/16 to any
block in quick on tunO from 172.16.0.0/12 to any
block in quick on tun0 from 10.0.0.0/8 to any

block in quick on tun0 from 127.0.0.0/8 to any
block in quick on tunO from 0.0.0.0/8 to any

block in quick on tun0 from 169.254.0.0/16 to any
block in quick on tun0 from 192.0.2.0/24 to any
block in quick on tunO from 204.152.64.0/23 to any
block in quick on tun0 from 224.0.0.0/3 to any

block in log quick on tun0 from 20.20.20.0/24 to any
block in log quick on tunO from any to 20.20.20.0/32
block in log quick on tun0 from any to 20.20.20.255/32

pass in quick on tun0 proto icmp from any to 20.20.20.0/24 icmp-type O
pass in quick on tunO proto icmp from any to 20.20.20.0/24 icmp-type 11
block in log quick on tunO proto icmp from any to any

pass in all

Because we block spoofed fiafbefore the ICMP rules are processed, a spoofecepaeaker makes it to
the ICMP rulesetlt’s very important to &ep such situations in mind when giag rules.

2.12. TCPand UDP Ports; The "port" K eyword

Now that weve darted blocking paaks based on protocol, we can start blocking @isckased on
specific aspects of each protocdlhe most frequently used of these aspects is the port nuiSbmices
such as rsh, rlogin, and telnet are @fywcormvenient to hae, but also hideously insecure a@gst netwrk
sniffing and spoofing.One great compromise is to only alldhe services to run internallthen block
them eternally This is easy to do because rlogin, rsh, and telnet use specific TCP ports (513, 514, and 23
respectiely). As such, creating rules to block them is easy:

block in log quick on tunO proto tcp from any to 20.20.20.0/24 port = 513
block in log quick on tunO proto tcp from any to 20.20.20.0/24 port = 514
block in log quick on tunO proto tcp from any to 20.20.20.0/24 port = 23
Make aure all 3 are before theass in all and thg’'ll be closed dffrom the outside (leéng out

spoofing for breity’s sake):

pass in quick on tunO proto icmp from any to 20.20.20.0/24 icmp-type 0
pass in quick on tun0 proto icmp from any to 20.20.20.0/24 icmp-type 11
block in log quick on tunO proto icmp from any to any

block in log quick on tunO proto tcp from any to 20.20.20.0/24 port = 513

block in log quick on tunO proto tcp from any to 20.20.20.0/24 port = 514

block in log quick on tunO proto tcp from any to 20.20.20.0/24 port = 23

pass in all

You might also vant to block 514/udp (syslog},11/tcp & 111/udp (portmap), 515/tcp (Ipd), 2049/tcp and
2049/udp (NFS), 6000/tcp (X11) and so on and so forthu can get a complete listing of the ports being
listened to by usingetstat -a (orlIsof -i , if you have it installed).

Blocking UDP instead of TCP only requires replagingto tcp with proto udp . The rule for
syslog would be:

block in log quick on tunO proto udp from any to 20.20.20.0/24 port = 514

IPF also has a shorthanayto write rules that apply to bogioto tcp andproto udp at the same
time, such as portmap or NF$he rule for portmap wuld be:

block in log quick on tunO proto tcp/udp from any to 20.20.20.0/24 port = 111

3. Advanced Firewalling Intr oduction

This section is designed as an immediate fallp to the basic sectionContained bel are both
concepts for achnced firevall design, and adnced features contained only within ipfiltédnce you are
comfortable with this section, you should be ableuitdba \ery strong firevall.

3.1. RampantParanoia; or The Default-Deny Stance

Theres a hg problem with blocking services by the port: sometimey theve RPC based pro-
grams are terrible about this, lockd, statenenfsd listens places other than 2048s awfully hard to pre-
dict, and gen worse to automate adjusting all the timé&/hat if you miss a servicethstead of dealing
with all that hassle, let’dart over with a clean slateThe current ruleset looks &khis:

Yes, we really are startingzer. The first rule wa'e going to use is this:

block in all

No netvwork trafic gets through. None. Not a peeyou're rather secure with this setuflot terribly use-
ful, but quite secureThe great thing is that it doesmake much more to makyour box rather secure, yet
useful too. Let's say the machine this is running on is a web eenothing more, nothing lesdt doesnt
even do DNS lookups. It just wants to tak connections on 80/tcp and thaif. We can do that.We can do
that with a second rule, and you alreadywow:

-10-

block in on tunO all

pass in quick on tunO proto tcp from any to 20.20.20.1/32 port = 80
This machine will pass in port 80 tfiaffor 20.20.20.1, and dgreverything else, including responses from
port 80. D fix this, you hae o dlow the response back out as well:

block in on tunO all
pass in quick on tunO proto tcp from any to 20.20.20.1/32 port = 80
pass out quick on tunO proto tcp from 20.20.20.1/32 port = 80 to any

For basic firavalling, this is all one needddowever, there is an easieray; by using stateful rules.

3.2. Implicit Allow; The "k eep state" Rule

The job of your fireall is to prevent unwanted trafic getting to point B from point AWe havegen-
eral rules which say "as long as this petcls to port 23, i dkay." We havegeneral rules which say "as
long as this paak has its FIN flag set, s'ckay." Our firewalls don't know the bginning, middle, or end
of arny TCP/UDP/ICMP sessionThey merely hae vague rules that are applied to all petsk W're left to
hope that the paek with its FIN flag set ishreally a FIN scan, mapping our servicé§e hope that the
paclet to port 23 isrt’an atempted hijack of our telnet sessioWwhat if there vas a vay to identify and
authorize indiidual TCP/UDP/ICMP sessions and distinguish them from port scanners and DoS attacks?
There is aay, it's alled keeping state.

We want cowvenience and security in oné.ots of people do, that'why Cscos hae an "established"
clause that lets established tcp sessions go thrdp@i.has establishedlpfwadm has setup/established.
They al have tis feature, bt the name isary misleading.When we first sa it, we thought it meant our
paclet filter was leeping track of what &s going on, that it kmeif a connection vas really established or
not. Thefact is, thg're all taking the paakt’'s word for it from a part of the paekarybody can lie about.
They read the TCP paek's flags section and thesethe reason UDP/ICMP dadnivork with it, they have
no such thing.Anybody who can create a pathkvith bogus flags can get by a il with this setup.

Where does IPF come in to play here, you agk¥l, unlike the other firevals, IPF really can &ep
track of whether or not a connection is establishi&ad it'll do it with TCP UDP and ICMPnot just TCP
Ipf calls it keeping stateThe keyword for the ruleset ikeep state

Up until nov, we've ld you that paokts come in, then the ruleset gets cleglpackts go out, then
the ruleset gets chee#f. Actually what happens is paets come in, the state table gets clegckhen
maybe the inbound ruleset gets chedk packts go out, the state table gets clegigkhen *maybe* the
outbound ruleset gets chetk Thestate table is a list of TCP/UDP/ICMP sessions that are unquestion-
adely passed through the fiml, circumventing the entire rulesetSound lile a ®rious security hole?
Hang on, it5 the best thing thatver happened to your fiveall.

All TCP/IP sessions va a $art, a middle, and an endvém though thg're sometimes all in the same
paclet). You cant havean end without a middle and you camdvea middle without a start.This means
that all you really need to filter on is thegbming of a TCP/UDP/ICMP sessioiif. the beginning of the
session is allwed by your firgval rules, you really vant the middle and end to be alled too (lest your IP
stack should werflow and your machines become useled§g¢eping state all@s you to ignore the middle
and end and simply focus on blocking/passing sessions. Ithe nev session is passed, all its subsequent
paclets will be alleved through. If it's Hocked, none of its subsequent patskwill be alleved through.
Heres an example for running an ssh sern{and nothing it an ssh sesr):

block out quick on tun0 all

pass in quick on tunO proto tcp from any to 20.20.20.1/32 port = 22 keep state
The first thing you might notice is that thereb "pass out" praision. Infact, theres anly an all-inclusie
"block out" rule. Despite this, the ruleset is complefhis is because byeleping state, the entire ruleset is
circumwented. Oncehe first SYN packt hits the ssh segy gate is created and the remainder of the ssh
session is allwed to take pace without interference from the fivell. Here’s another &le:

block in quick on tun0 all
pass out quick on tunO proto tcp from 20.20.20.1/32 to any keep state

In this case, the sesvis running no servicednfact, it's ot a serer, it's a dient. Andthis client doesn’
want unauthorized paeits entering its IP stack at alHowever, the client vants full access to the internet

-11-

and the reply paeks that such priedge entails.This simple ruleset creates state entries eryenew out-
going TCP sessionAgain, since a state entry is created, these T@P sessions are free to talk back and
forth as thg please without the hinderance or inspection of thevélteuleset. We mentioned that this also
works for UDP and ICMP:

block in quick on tunO all
pass out quick on tunO proto tcp from 20.20.20.1/32 to any keep state
pass out quick on tunO proto udp from 20.20.20.1/32 to any keep state

pass out quick on tunO proto icmp from 20.20.20.1/32 to any keep state

Yes Virginia, we can ping.Now we're keeping state on TCRIDP, ICMP. Now we can male autgoing
connections as though theyeb firewall at all, yet would-be attacérs cart get back in. This is \ery handy
because there'no need to track den what ports wee listening to, only the ports weanwt people to be
able to get to.

State is pretty hangiut it's dso a bit tricly. You can shoot yourself in the foot in strange and mys-
terious vays. Considethe following ruleset:

pass in quick on tun0 proto tcp from any to 20.20.20.1/32 port = 23

pass out quick on tunO proto tcp from any to any keep state

block in quick all

block out quick all
At first glance, this seems to be a good setye. dlow incoming sessions to port 23, and outgoing ses-
sions agwhere. Naturallypaclets going to port 23 will hee reply paclets, hut the ruleset is setup in such
a way that the pass out rule will generate a state entry\angtiging will work perfectly At least, youl
think so.

The unfortunate truth is that after 60 seconds of idle time the state entry will be closed (as opposed to
the normal 5 days)This is because the state trackever saw the original SYN paadht destined to port 23,
it only sav the SYN ACK. IPFis very good about follwing TCP sessions from start to finishit it’s not
very good about coming into the middle of a connection, woiteethe rule to look lik this:

pass in quick on tunO proto tcp from any to 20.20.20.1/32 port = 23 keep state
pass out quick on tunO proto tcp from any to any keep state

block in quick all

block out quick all

The additional of this rule will enter theeny first packt into the state table angeeything will work as

expected. Oncéhe 3-way handshakhas been witness by the state engine, it is ethik 4/4 mode, which
means it etup for long-term dataxehange until such time as the connection is tomndwherein the
mode changes a@. You can see the current modes of your state tablepidtat -s

3.3. StatefulUDP

UDP is stateless so naturallysi@é bt harder to do a reliable job okkping state on itNonetheless,
ipf does a pretty good job/Vhen machine A sends a UDP patto machine B with source port X and des-
tination port Y ipf will allow a reply from machine B to machine A with source port Y and destination port
X. Thisis a short term state entgymere 60 seconds.

Heres an example of what happens if we use nslookup to get the IP address oBensmmcom:

$ nslookup www.3com.com

A DNS paclet is generated:

17:54:25.499852 20.20.20.1.2111 > 198.41.0.5.53: 51979+

The packt is from 20.20.20.1, port 2111, destined for 198.41.0.5, porA33 second state entry is cre-
ated. Ifa packet comes back from 198.41.0.5 port 53 destined for 20.20.20.1 port 2111 within that period
of time, the reply paak will be let through.As you can see, milliseconds later:

17:54:25.501209 198.41.0.5.53 > 20.20.20.1.2111: 51979 q: www.3com.com

The reply packt matches the state criteria and is let throughthat same moment that patkis let
through, the stateagevay is dosed and no meincoming packts will be alleved in, @en if they claim to

-12-

be from the same place.

3.4. StatefullCMP

IPFilter handles ICMP states in the manner that ooeldvecpect from understanding Wo CMP is
used with TCP and UDRBnd with your understanding of \wkeep state ~ works. There are twgeneral
types of ICMP messages; requests and repli&en you write a rule such as:

pass out on tun0 proto icmp from any to any icmp-type 8 keep state

to allov outbound echo requests (a typical ping), the resultant icmp-type @tghek comes back will be
allowed in. This state entry has a @eift timeout of an incomplete 0/0 state of 60 secontlkus, if you
are leeping state on gnoutbound icmp message that will elicit an icmp message in,rgply need a
proto icmp [...] keep state rule.

However, the majority of ICMP messages are status messages generated bgikomenfUDP (and
sometimes TCP), and in 3.4.x and greater IPFiltens|@MP error status message (semp-type 3
code 3 port unreachable, acmp-type 11 time exceeded) that matches an aetgate table entry that
could hae generated that message, the ICMP padk let in. For example, in older IPFilters, if you
wanted traceroute to ovk, you needed to use:

pass out on tun0 proto udp from any to any port 33434><33690 keep state
pass in on tun0 proto icmp from any to any icmp-type timex

whereas n@ you can do the right thing and justdp state on udp with:

pass out on tun0 proto udp from any to any port 33434><33690 keep state

To provide some protection a@nst a third-party sneaking ICMP messages through yowdfirehen an
active onnection is knen to be in your state table, the incoming ICMP gahdk checkd not only for
matching source and destination addresses (and ports, when appliaablénbpart of the payload of the
paclet that the ICMP message is claiming &sxgenerated by

3.5. FIN Scan Detection; "flags" Keyword, "k eep frags" Keyword
Let's go back to the 4 rule set from the pieus section:

pass in quick on tunO proto tcp from any to 20.20.20.1/32 port = 23 keep state
pass out quick on tunO proto tcp from any to any keep state
block in quick all
block out quick all
This is almost, bt not quite, satisfctory The problem is that & ot just SYN packts that'e allaved to

go to port 23, anold paclet can get throughWe aan change this by using tiags option:

pass in quick on tunO proto tcp from any to 20.20.20.1/32 port = 23 flags S keep state
pass out quick on tunO proto tcp from any to any flags S keep state

block in quick all

block out quick all

Now only TCP packts, destined for 20.20.20.1, at port 23, with a lone SYN flag will bevedlon and
entered into the state tabl&.lone SYN flag is only present as theryfirst packt in a TCP session (called
the TCP handshal and thas really what we vanted all along.Theres & least tvo advantages to thisNo
arbitrary packts can come in and mala mess of your state tabléAlso, FIN and XMAS scans willdil
since thg set flags other than the SYN flagNow all incoming paclets must either be handslealor hae
state alreadylf anything else comes in, #'robably a port scan or a fygd packt. Theres one exception
to that, which is when a pagkcomes in that'fragmented from its jourye IPF has praisions for this as
well, thekeep frags keyword. WIth it, IPF will notice and &ep track of paaks that are fragmented,
allowing the epected fragments to to go throughet’s rewrite the 3 rules to log fgeries and allw frag-
ments:

T Some eamples usélags S/SA instead oflags S . flags S actually equates tlags S/AUPRFS and matches ainst only the SYN
paclet out of all six possible flags, whiflags S/SA will allow packets that may or may notVvethe URG, PSH, FIN, or RST flags s&ome
protocols demand the URG or PSH flags, &f8IAFR would be a better choice for thesewmwer we feel that it is less secure to blindly B#SA
when it isnt required. Buit's your firewall.

-13-

pass in quick on tunO proto tcp from any to 20.20.20.1/32 port = 23 flags S keep state keep frags

pass out quick on tunO proto tcp from any to any keep state flags S keep frags

block in log quick all

block out log quick all
This works becausevery paclet that should be alleed through mads it into the state table before the
blocking rules are reached. The only scan thes’'tmdetect is a SYN scan itseltf you're truely vorried

about that, you mightven want to log all initial SYN pachts.

3.6. Respondinglo a Blocked Packet

So far, dl of our blocled packts hae keen dumped on the flagdogged or not, wee reve sent
arything back to the originating hosSometimes this ish'the most desirable of responses because in
doing so, we actually tell the attakthat a paait filter is presentlt seems adr better thing to misguide
the attackr into beli@ing that, while thera no packet filter running, thereg’likewise no services to break
into. Thisis where &ncier blocking comes into play

When a service ishifunning on a Unix system, it normally lets the remote hostvkmith some sort
of return packt. InTCR this is done with an RST (Reset) patkWhenblocking a TCP paak, IPF can
actually return an RST to the origin by using teirn-rst keyword.

Where once we did:
block in log on tunO proto tcp from any to 20.20.20.0/24 port = 23
pass in all

We night now do:
block return-rst in log proto tcp from any to 20.20.20.0/24 port = 23
block in log quick on tun0
pass in all

We reed tvo block statements sina@turn-rst only works with TCRand we still want to block pro-
tocols such as UDPCMP, and others.Now that this is done, the remote side will get "connection refused”
instead of "connection timed out".

It's dso possible to send an error message when somebody sendsta@addDP port on your sys-
tem. Whereasnce you might hae wsed:

block in log quick on tun0O proto udp from any to 20.20.20.0/24 port = 111
You could instead use threturn-icmp keyword to send a reply:

block return-icmp(port-unr) in log quick on tun0 proto udp from any to 20.20.20.0/24 port = 111

According toTCP/IP lllustrated port-unreachable is the correct ICMP type to return when no service is lis-
tening on the port in questiorYou can use apnICMP type you lile, lut port-unreachable is probably your
best bet.It's dso the dediult ICMP type foreturn-icmp

However, when usingreturn-icmp , you'll notice that its not very stealtly, and it returns the
ICMP paclet with the IP address of the fivdl, not the original destination of the patk Thiswas fixed
in ipfilter 3.3, and a e keyword; return-icmp-as-dest , has been addedThe nev format is:

block return-icmp-as-dest(port-unr) in log on tun0 proto udp from any to 20.20.20.0/24 port = 111

Additionally, you should be careful to use response ptcknly in situations where you understand ahead
of time what it is that yowé responding toFor example, if you happened to return-icmp to a local oekw
broadcast address, yowwd end up flooding your netsk in short orderr

3.7. Fancy Logging Techniques

It is important to note that the presence of ige keyword only ensures that the patkwill be
awailable to the ipfilter logging déce; /dev/ipl . In order to actually see this log information, one must
be running thépmon utility (or some other utility that reads frofdev/ipl). Thetypical usage ofog

T This is especially true in a DHCP/BJ® ervironment such as a typical consumer broadband connection where you run the risk of “attacking”
your avn ISPs DHCP serer. They won't appreciate it.

-14-

is coupled withipmon -s to log the information to syslogAs of ipfilter 3.3, one can moeven control
the logging behdor of syslog by usindpg level keywords, as in rules such as this:

block in log level auth.info quick on tunO from 20.20.20.0/24 to any

block in log level auth.alert quick on tunO proto tcp from any to 20.20.20.0/24 port = 21
In addition to this, you can tailor what information is being logdeat.example, you may not be interested
that someone attempted to probe your telnet port 500 timégoh are interested that thprobed you
once. Yu can use théog first keyword to only log the first>ample of a paddt. Of course, the
notion of "first-ness" only applies to patk in a specific session, and for the typical kddckackt, you
will be hard pressed to encounter situations where this does whatpect.eHavever, if used in conjunc-
tion with pass andkeep state |, this can be aaluable leyword for keeping tabs on traé.

Another useful thing you can do with the logs is ¢é&f track of interesting pieces of the petak
addition to the header information normally being logghdilter will give you the first 128 bytes of the
paclet if you use théog body keyword. You should limit the use of body logging, as it msiyour logs
very verbose, bt for certain applications, it is often handy to be able to go back aadathkk at the
paclet, or to send this data to another application that xamiee it further

3.8. Puttinglt All T ogether

So nav we havea pretty tight firavall, but it can still be tighter Some of the original ruleset we
wiped clean is actuallyery useful. I'd suggest bringing back all the anti-spoofing &tufhis leaves s
with:

block in on tun0

block in quick on tun0 from 192.168.0.0/16 to any
block in quick on tun0 from 172.16.0.0/12 to any
block in quick on tunO from 10.0.0.0/8 to any

block in quick on tun0 from 127.0.0.0/8 to any
block in quick on tun0 from 0.0.0.0/8 to any

block in quick on tunO from 169.254.0.0/16 to any
block in quick on tun0 from 192.0.2.0/24 to any
block in quick on tun0 from 204.152.64.0/23 to any
block in quick on tunO from 224.0.0.0/3 to any

block in log quick on tun0 from 20.20.20.0/24 to any

block in log quick on tunO from any to 20.20.20.0/32

block in log quick on tunO from any to 20.20.20.255/32

pass out quick on tunO proto tcp/udp from 20.20.20.1/32 to any keep state

pass out quick on tunO proto icmp from 20.20.20.1/32 to any keep state
pass in quick on tunO proto tcp from any to 20.20.20.1/32 port = 80 flags S keep state

3.9. Improving Performance With Rule Groups

Let's extend our use of our fivell by creating a much more complicated, and we hope more applica-
ble to the real wrld, example configuration &t this example, werfe going to change the intade names,
and netwark numbers.Let's sssume that we e three inter&ces in our fineall with interfacesxlO , xI1 ,
andxl2 .

xI0 is connected to our external network 20.20.20.0/26
xI1 is connected to our "DMZ" network 20.20.20.64/26
xI2 is connected to our protected network 20.20.20.128/25

We'l | define the entire ruleset in one@p, since we figure that you can read these ruleswy no

block in quick on xI0 from 192.168.0.0/16 to any
block in quick on xI0 from 172.16.0.0/12 to any
block in quick on xI0 from 10.0.0.0/8 to any

block in quick on xI0 from 127.0.0.0/8 to any
block in quick on xI0 from 0.0.0.0/8 to any

block in quick on xI0 from 169.254.0.0/16 to any
block in quick on xI0 from 192.0.2.0/24 to any
block in quick on xI0 from 204.152.64.0/23 to any
block in quick on xI0 from 224.0.0.0/3 to any

block in log quick on xI0 from 20.20.20.0/24 to any
block in log quick on xI0 from any to 20.20.20.0/32
block in log quick on xI0 from any to 20.20.20.63/32
block in log quick on xI0 from any to 20.20.20.64/32
block in log quick on xI0 from any to 20.20.20.127/32
block in log quick on xI0 from any to 20.20.20.128/32

-15-

block in log quick on xI0 from any to 20.20.20.255/32
pass out on xI0 all

pass out quick on xI1 proto tcp from any to 20.20.20.64/26 port = 80 flags S keep state
pass out quick on xI1 proto tcp from any to 20.20.20.64/26 port = 21 flags S keep state
pass out quick on xI1 proto tcp from any to 20.20.20.64/26 port = 20 flags S keep state
pass out quick on xI1 proto tcp from any to 20.20.20.65/32 port = 53 flags S keep state
pass out quick on xI1 proto udp from any to 20.20.20.65/32 port = 53 keep state

pass out quick on xI1 proto tcp from any to 20.20.20.66/32 port = 53 flags S keep state
pass out quick on xI1 proto udp from any to 20.20.20.66/32 port = 53 keep state

block out on xI1 all

pass in quick on xI1 proto tcp/udp from 20.20.20.64/26 to any keep state

block out on xI2 all
pass in quick on xI2 proto tcp/udp from 20.20.20.128/25 to any keep state

From this arbitarary>ample, we can already see that our ruleset is becoming unwigtdynake matters
worse, as we add more specific rules to our DMZ ngtywve add additional tests that must be parsed for
evay paclet, which afects the performance of t0 <->xI2 connections. Ifou set up a fingall with

a ruleset lile this, and you hae lots of bandwidth and a moderate amount of cperyene that has aavk-
station on thI2 network is going to come looking for your head to place on a plaBerto keep your
head <-> torso netwk intact, you can speed things along by creating rule gro®ude groups allw you

to write your ruleset in a treaghion, instead of as a linear list, so that if your pabks nothing to do with
the set of tests (sasll thosexI1 rules) those rules will ver be mnsulted. 15 ©meawhat like having mul-

tiple firewalls all on the same machine.
Heres a smple example to get us started:

block out quick on xI1 all head 10
pass out quick proto tcp from any to 20.20.20.64/26 port = 80 flags S keep state group 10
block out on xI2 all

In this simplistic @ample, we can see a small hint of thevpoof the rule grouplf the paclet is not des-
tined forxI1 , thehead of rulegroup 10 will not match, and we will go on with our testf.the paclet
does match foxl1l , the quick keyword will short-circuit all further processing at the rootde(rule
group 0), and focus the testing on rules which belomgdaop 10 ; namely the SYN check for 80/tcpln

this way, we can re-write the ah@ les so that we can maximize performance of ounéite

block in quick on xI0 all head 1

block in quick on xI0 from 192.168.0.0/16 to any group 1
block in quick on xI0 from 172.16.0.0/12 to any group 1
block in quick on xI0 from 10.0.0.0/8 to any group 1
block in quick on xI0 from 127.0.0.0/8 to any group 1
block in quick on xI0 from 0.0.0.0/8 to any group 1
block in quick on xI0 from 169.254.0.0/16 to any group 1
block in quick on xI0 from 192.0.2.0/24 to any group 1
block in quick on xI0 from 204.152.64.0/23 to any group 1

block in quick on xI0 from 224.0.0.0/3 to any group 1
block in log quick on xI0 from 20.20.20.0/24 to any group 1
block in log quick on xI0 from any to 20.20.20.0/32 group 1
block in log quick on xI0 from any to 20.20.20.63/32 group 1
block in log quick on xI0 from any to 20.20.20.64/32 group 1

block in log quick on xI0 from any to 20.20.20.127/32 group 1
block in log quick on xI0 from any to 20.20.20.128/32 group 1
block in log quick on xI0 from any to 20.20.20.255/32 group 1
pass in on xI0 all group 1

pass out on xI0 all

block out quick on xI1 all head 10

pass out quick on xI1 proto tcp from any to 20.20.20.64/26 port = 80 flags S keep state group 10
pass out quick on xI1 proto tcp from any to 20.20.20.64/26 port = 21 flags S keep state group 10
pass out quick on xI1 proto tcp from any to 20.20.20.64/26 port = 20 flags S keep state group 10
pass out quick on xI1 proto tcp from any to 20.20.20.65/32 port = 53 flags S keep state group 10
pass out quick on xI1 proto udp from any to 20.20.20.65/32 port = 53

pass out quick on xI1 proto tcp from any to 20.20.20.66/32 port = 53 flags S keep state

pass out quick on xI1 proto udp from any to 20.20.20.66/32 port = 53

pass in quick on xI1 proto tcp/udp from 20.20.20.64/26 to any keep state
block out on xI2 all

pass in quick on xI2 proto tcp/udp from 20.20.20.128/25 to any keep state

keep state group 10
keep state group 10

-16-

Now you can see the rule groups in actidfor a host on thexl2 network, we can completely bypass all
the checks igroup 10 when wefe not communicating with hosts on that neti

Depending on your situation, it may be prudent to group your rules by protocaljarssmachines,
or netblocks, or whater makes it flav smoothly.

3.10. "Fastroute"; The Keyword of Stealthiness

Even though wek forwarding some paeits, and blocking other pastls, were typically behaing
like a well behaed router should by decrementing the TTL on the paeind ackneledging to the entire
world that yes, there is a hop herBut we can hide our presence from inquisitgpplications lile unix
traceroute which uses UDP pat& with \arious TTL \alues to map the hops betweem sites. Ifwe want
incoming traceroutes toawk, but we do not want to announce the presence of oumféeas a hop, we can
do so with a rule lik this:

block in quick on xI0 fastroute proto udp from any to any port 33434 >< 33465

The presence of tHastroute keyword will signal ipfilter to not pass the patkinto the Unix IP stack
for routing which results in a TTL decremerithe paclkt will be placed gently on the output intmé by
ipfilter itself and no such decrement will happépfilter will of course use the systesnfouting table to
figure out what the appropriate output inded really is, bt it will take care of the actual task of routing
itself.

Theres a eason we usedlock quick in our xample, too.If we had usegbass , and if we had
IP Forwarding enabled in oureknel, we wuld end up hang two paths for a paakt to come out of, and
we would probably panic oureknel.

It should be noted, leever, that most Unix krnels (and certainly the ones underlying the systems
that ipfilter usually runs on) ka far more dicient routing code than whakists in ipfilter and this
keyword should not be thought of as ayto imprae the operating speed of your firdl, and should only
be used in places where stealth is an issue.

4. NAT and Proxies

Outside of the corporate dronment, one of the biggest enticements ofafaktechnology to the
end user is the ability to connectvel computers through a commoxternal interéce, often without the
approval, knowledge, or gen consent of their service primer. To those &miliar with Linux, this concept
is calledIP Masqueading but to the rest of the evld it is knawn by the more obscure nameNétwork
Address Tanslation,or NAT for short.

4.1. MappingMany Addr esses Into One Addess

The basic use of AT accomplishes much the same thing that Lisul® Masquerading function
does, and it does it with one simple rule:

map tun0 192.168.1.0/24 -> 20.20.20.1/32

Very simple. Whenever a packet goes out théun0 interface with a source address matching the CIDR
network mask of 192.168.1.0/24 tt this pathvill be revritten within the IP stack such that its source
address is 20.20.20.1, and it will be sent on to its original destinafibe. system alsodeps a list of what
translated connections are in progress so that it can perfornvéngerand remap the response (which will
be directed to 20.20.20.1) to the internal host that really generated tlet. pack

T To be pedantic, what IPFilter prades is really called N&T, for Network and Port Addressranslation, which means we can changg @frthe
source and destination IP Addresses and their source and destinatioTp@tsAT only allows one to change the addresses.
t1 This is a typical internal address space, sinsedti-routable on the Real Internet it is often used for internalarksw You should still block

these paodts coming in from the outsideowd as discussed earlier

-17-

There is a draback to the rule we ka just written, though.n a lage number of cases, we do not
happen to kne what the IP address of our outside link is (if raisingtun0 or ppp0 and a typical ISP)
so it males setting up our AT tables a chore.Luckily, NAT is amart enough to accept an address of 0/32
as a signal that it needs to go look at what the address of thaadeteetlly is and we canwate our rule
as follavs:

map tun0 192.168.1.0/24 -> 0/32

Now we can load ouiipnat rules with impunity and connect to the outsideri without haing to edit
arything. You do hae o runipf -y to refresh the address if you get disconnected and redial or if your
DHCP lease changes, though.ttt

Some of you may be amdering what happens to the source port when the mapping hapihs.
our current rule, the paeks urce port is unchanged from the original source pdtiere can be
instances where we do not desire this bEliamaybe we hae another firevall further upstream we ha
to pass through, or perhaps mdnosts are trying to use the same source port, causing a collision where the
rule doesrt' match and the paekis passed untranslateignat helps us here with tip@rtmap keyword:
map tun0 192.168.1.0/24 -> 0/32 portmap tcp/udp 20000:30000

Our rule nev shoehorns all the translated connections (which canpbe udp, or tcp/udp) into the port
range of 20000 to 30000.

Additionally, we can male aur lives even easier by using thauto keyword to tell ipnat to determine
for itself which ports arewailable for use, and allocate a proportional amount of them per address in your
pool \ersus addresses being natted:
map tun0 192.168.1.0/24 -> 0/32 portmap tcp/udp auto

Keep in mind that thesgortmap rules only apply to the protocols that yowéapecified (e.g.: tcp, udp,
or tcp/udp), and do not apply to other protocols IRMP or IPSec ESP/AH.For these, you need to Y&
an additonamap statement that applies to all other protocols:

map tun0 192.168.1.0/24 -> 0/32 portmap tcp/udp 20000:30000

map tun0 192.168.1.0/24 -> 0/32
4.2. MappingMany Addr esses Into a Bol of Addresses

Another use common use ofAN is to take a snall statically allocated block of addresses and map

mary computers into this smaller address spadéis is easy to accomplish using what you alreadykno
about thamapandportmap keywords by writing a rule lig :

map tun0 192.168.0.0/16 -> 20.20.20.0/24 portmap tcp/udp 20000:60000
Also, there may be instances where a remote application requires that multiple connections all come from
the same IP addres®Ve an help with these situations by telling\Nto datically map sessions from a
host into the pool of addresses andrkvsome magic to choose a port. This uses a ¢yedtd map-
block as follaws:

map-block tun0 192.168.1.0/24 -> 20.20.20.0/24
As with map, map-block has its avn version ofportmap . This is accomplished with either theto
keyword:

map-block tun0 192.168.1.0/24 -> 20.20.20.0/24 auto
or theports keyword, if you want to specify yourwn number of ports belonging to each ip address:

map-block tun0 192.168.1.0/24 -> 20.20.20.0/24 ports 64

T11 Typically you'd do this in your netwrk interface setup scripts for your ppp clientf khat is well bgond the scope of this document.

-18-

4.3. Oneto One Mappings

Occasionally it is desirable tovea ystem with one IP address behind thenaléto appear to hae
a ompletely diferent IP addressOne example of hav this would work would be a lab of computers
which are then attached tanious netwrks that are to be put under some kind of tésthis example, you
would not want to ha&e reconfigure the entire lab when you could placeAT Nystem in front and
change the addresses in one simple plage. an do that with theimap keyword, for bidirectional map-
ping. Bimap has some additional protections on it to ensure avkraiate for the connection, whereas
themap keyword is designed to allocate an address and a source porinaitd tiee packt and go on with
life.

bimap tun0 192.168.1.1/32 -> 20.20.20.1/32
will accomplish the mapping for one host.

4.4. Policy NAT

Quite often, we will find ourseds in need of hang NAT behave dfferently based on which source
and destination addresses are being uséar example, we might ant to alvays NAT unless we are
speaking with a specific subnet:

map tun0 from 192.168.1.0/24 ! to 5.0.0.0/20 -> 20.20.20.1/32
We might also vant to do something likthe following:

map tun0 from 192.168.1.5/32 port = 5555 to 1.2.3.4/32 -> 20.20.20.2/32
map tun0 from 192.168.1.0/24 to 5.0.0.0/20 -> 20.20.20.2/32 portmap auto

4.5. SpoofingSewices

Spoofing servicesWhat does that lva o do with arything? Plenty Let’s pretend that we ha a
web serer running on 20.20.20.5, and since weefptten increasingly suspicious of our netl security
we desire to not run this semvon port 80 since that requires a brief lifespan as the root Bsgrhov do
we run it on a less piiedged port of 8000 in thisarld of "arything dot com"?How will anyone find our
sener? W an use the redirectiomdilities of NAT to solve this problem by instructing it to remapyan
connections destined for 20.20.20.5:80 to really point to 20.20.20.5:8D0i8.uses thedr keyword:

rdr tun0 20.20.20.5/32 port 80 -> 192.168.0.5 port 8000

We @an also specify the protocol here, if wanted to redirect a UDP service, instead of a TCP service
(which is the dedult). For example, if we had a hogpot on our firavall to impersonate the popular Back
Orifice for Windows, we could sheel our entire netwrk into this one place with a simple rule:

rdr tun0 20.20.20.0/24 port 31337 -> 127.0.0.1 port 31337 udp
We @an also alterdr ’'s behavior based on the source and destination addresses:

rdr tunO from 10.1.1.1/32 to 20.20.20.5/32 port = 80 -> 192.168.0.5 port 8001

rdr tunO from 10.1.1.1/32 port = 12345 to 20.20.20.5/32 port = 80 -> 192.168.0.5 port 8002
An extremely important point must be made abmirt : You cannot easilyt use this feature as a "reflec-
tor". E.Q:

rdr tun0 20.20.20.5/32 port 80 -> 20.20.20.6 port 80 tcp

will not work in the situation where .5 and .6 are on the same LANeet. Thedr function is applied
to paclets that enter the fingll on the specified inteate. Whem packet comes in that matchesdr
rule, its destination address is thewrnigen, it is pushed intgpf for filtering, and should it successfully
run the @untlet of filter rules, it is then sent to the unix routing cd8iece this pacddt is stillinboundon
the same inteaice that it will need to lea the system on to reach a host, the system gets confRediéc-
tors dont work. Neitherdoes specifying the address of the irdeef the paakt just came in onAlways

T Yes. There is aay to do this.It's © corvoluted that | refuse to use it, thougBmart people who require this functionality will transparently redi-
rect into something l& TIS plug-gw on 127.0.0.1Stupid people will set up a dummy loop ingeré pair and doubleweite.

-19-

remember thatdr destinations mustxé out of the firevall host on a diferent interbce. T1

4.6. Transparent Proxy Support; Redirection Made Useful

Since you'e installing a firesall, you may hae decided that it is prudent to use a proxy for gnah
your outgoing connections so that you can further tighten your filter rules protecting your interioaknetw
or you may hee mn into a situation that theAY mapping process does not currently handle properly
This can also be accomplished with a redirection statement:

rdr xI0 0.0.0.0/0 port 21 -> 127.0.0.1 port 21

This statement says thatyapacket coming in on th&lO interface destined for greddress (0.0.0.0/0) on
the ftp port should be weitten to connect it with a proxy that is running on th&l$ystem on port 21.

This specific gample of FTP proxying does lead to some complications when used with web
browsers or other automatic-login type clients that arevareof the requirements of communicating with
the proxy There are patches foiS Frewall Toolkit'sftp-gw to mate it with the nat process so that it can
determine where you were trying to go and automatically send you tkers. proxy packages mowork
in a transparent proxy enonment (Squid forxemple, located dittp://squid.nlannet works fine.)

This application of thedr keyword is often more useful when you wish to force users to authenti-
cate themsebks with the proxy(For example, you desire your engineers to be able to surf the welpob
would rather not hee your call-center stafloing so.)

4.7. Filtering Redirected Sevices

Quite a lot of users will ant to combine both filtering and address translation in order vidpra
service to only knen hosts behind their AT system. Br example, to preide a web serer behind your
machine 20.20.20.5 (which is really 192.168.0.5 on your inside onletwfor your friend @er on
172.16.8.2, you wuld write the folleving in ipnat.rules:

rdr tun0 20.20.20.5/32 port 80 -> 192.168.0.5 port 8000
and the folleving in ipf.rules:

pass in on tunO proto tcp from 172.16.8.2/32 to 192.168.0.5/32 port = 8000 flags S keep state

That might look a little strange at first glanceit thats because the ATl stage happens first, and the
paclet's destination address and port igvriten before it is processed by the filter code.

4.8. MagicHidden Within NAT; Application Proxies

Sinceipnat provides a method to vaite paclets as the traverse the firevall, it becomes a con-
venient place to bild in some application &l proxies to mak up for well knavn deficiencies of that
application and typical fivealls. For example; FTP We can male aur firewall pay attention to the paeks
going across it and when it notices that @aling with an Actre FTP session, it can write itself some tem-
porary rules, much likwhat happens witkeep state , so0 that the FTP data connectiororks. 10 do
this, we use a rule likso:

map tun0 192.168.1.0/24 -> 20.20.20.1/32 proxy port ftp ftp/tcp

You must alvays remember to place thigoxy rule before ary portmap rules, otherwise when
portmap comes along and matches the maand revrites it before the proxy gets a chance twrkwon it.
Remember that ipnat rules are first-match.

There also xst proxies for "rcmd" (which we suspect is baldy r-* commands which should be
forbidden agway, thus we heen’'t looked at what this proxy does) and "raudio" for Real Audio PNM
streams. Likwise, both of these rules should be put befoyepamtmap rules, if youte doing MT.

11 This includes 127.0.0.1, by thayv That's an 100. Neathuh?

-20-

4.9. More Magic; Using NAT As a Load Balancer

Sinceipnat is already reriting paclets for us, we can use it to support one of the simpler features
of those &pensve load-balancing systems and assign sessions to multiple destination addrésses.
accomplished using ttreund-robin ~ keyword:

rdr tun0 20.20.20.5/32 port 80 -> 192.168.0.5, 192.168.0.6, 192.168.0.7 port 8000

5. Loadingand Manipulating Filter Rules; The ipf Utility

IP Filter rules are loaded by using ipé utility. The filter rules can be stored inydile on the sys-
tem, hut typically these rules are stored /&tc/ipf.rules , lusr/local/etc/ipf.rules , or
letclopt/ipflipf.rules

IP Filter has tw sets of rules, thactive setand theinactive set By default, all operations are per
formed on the aote ®t. You can manipulate the inagti st by addingl to theipf command line. The
two sets can be toggled by using ti'e command line optionThis is \ery useful for testing merule sets
without wiping out the old rule set.

Rules can also be rewesl from the list instead of added by using thecommand line option,ut it
is generally a safer idea to flush the rule set thatrgawdrking on with-F and completely reload it when
making changes.

In summary the easiest ay to load a rule set ipf -Fa -f /etc/ipf.rules . For more
complicated manipulations of the rule set, please sdpf(i¢ man page.

6. Loadingand Manipulating NAT Rules; The ipnat Utility

NAT rules are loaded by using thpmat utility. The NAT rules can be stored infile on the sys-
tem, lut typically these rules are stored/é@tc/ipnat.rules , lusr/local/etc/ipnat.rules ,
or /etc/opt/ipf/ipnat.rules

Rules can also be rewenl from the list instead of added by using thecommand line option,ut it
is generally a safer idea to flush the rule set thatrgawdrking on with-C and completely reload it when
making changesAny active mappings are not efcted by-C, and can be remad with -F .

NAT rules and actie mappings can bexamined with thel command line option.
In summarythe easiest ay to load a)T rule set igpnat -CF -f /etc/ipnat.rules

7. Monitoring and Delugging

There will come a time when you are interested in what yowdirés actually doing, and ipfilter
would be incomplete if it didh’havea full suite of status monitoring tools.

7.1. Theipfstat utility

In its simplest formjpfstat displays a table of interesting data aboutvhymur firewall is per
forming, such as o mary packets hae keen passed or bloed, if they were logged or not, ko mary
state entries v@ keen made, and so oilere’s an example of something you might see from running the
tool:

i pfstat
input packets: blocked 99286 passed 1255609 nomatch 14686 counted O
output packets: blocked 4200 passed 1284345 nomatch 14687 counted O
input packets logged: blocked 99286 passed 0
output packets logged: blocked 0 passed 0
packets logged: input 0 output 0
log failures: input 3898 output 0
fragment state(in): kept O lost 0
fragment state(out): kept O lost 0
packet state(in): kept 169364 lost O
packet state(out): kept 431395 lost 0

ICMP replies: 0 TCP RSTs sent: 0

-21-

Result cache hits(in): 1215208 (out): 1098963
IN Pullups succeeded: 2 f ailed: 0

OUT Pullups succeeded: 0 f ailed: O

Fastroute successes: 0 f ailures: 0
TCP cksum fails(in): 0 (out): 0

Packet log flags set: (0)
none

ipfstat is also capable of stving you your current rule listUsing the-i or the-o flag will shav the
currently loaded rules for in or out, respedff. Adding a-h to this will provide more useful information
at the same time by slong you a "hit count" on each rul&or example:

i pfstat -ho

2451423 pass out on xI0 from any to any

354727 block out on ppp0 from any to any

430918 pass out quick on pppO proto tcp/udp from 20.20.20.0/24 to any keep state keep frags

From this, we can see that perhaps tilsexmhething abnormal going on, since wae'gpt a lot of bloclked
paclets outbound, ven with a very permissie pass out rule. Somethinchere may \arrant further
investigation, orit may be functioning perfectly by desigipfstat cart tell you if your rules are right or
wrong, it can only tell you what is happening because of your rules.

To further delig your rules, you mayant to use then flag, which will shev the rule number ne¢ to each
rule.

i pfstat -on

@1 pass out on xI0 from any to any

@2 block out on ppp0 from any to any

@3 pass out quick on ppp0 proto tcp/udp from 20.20.20.0/24 to any keep state keep frags

The final piece of really interesting information tifstat ~ can praide us is a dump of the state table.
This is done with thes flag:

i pfstat -s
281458 TCP
319349 UDP
0 | CMP
19780145 hits
5723648 misses
0 maximum
0 no nemory
1 active
319349 expired
281419 closed
100.100.100.1 -> 20.20.20.1 ttl 864000 pass 20490 pr 6 state 4/4

pkts 196 bytes 17394 987 -> 22 585538471:2213225493 16592:16500
pass in log quick keep state
pkt_flags & b = 2, pkt_options & ffffffff = 0

pkt_: secunty&ﬁff 0, pkt_auth & ffff =0

Here we see that we V@ me state entry for a TCP connectiofhe output will \ary slightly from ersion

to version, lot the basic information is the samé/e can see in this connection that wevda tilly estab-

lished connection (represented by the 4/4 st@ther states are incomplete and will be documented fully
later) We can see that the state entry has a timevéodi 240 hours, which is an absurdly long timet s

the defult for an established TCP connectioithis TTL counter is decrementesleey second that the

state entry is not used, and will finally result in the connection beirgeguf it has been left idle.The

TTL is also reset to 864000 whemethe state IS used, ensuring that the entry will not time out while it is
being actiely used. We @an also see that we yepassed 196 paeks consisting of about 17kBowth of

data @er this connection.We @an see the ports for both endpoints, in this case 987 and 22; which means
that this state entry represents a connection from 100.100.100.1 port 987 to 20.20.20.1 pbe g2ally

big numbers in the second line are the TCP sequence numbers for this connection, which helps to ensure
that someone isheasily able to inject a fged packt into your sessionThe TCP windw is dso shevn.

The third line is a synopsis of the implicit rule thatsagenerated by theep state code, shwing that

this connection is an inbound connection.

7.2. Theipmon utility

ipfstat is great for collecting snapshots of wisagbing on on the systemubit’s dten handy to
have me kind of log to look at andatch &ents as the happen in time. ipmon is this tool. ipmon is

-22-

capable of vatching the paak log (as created with theg keyword in your rules), the state log, or the nat
log, or ary combination of the three.This tool can either be run in the fgreund, or as a daemon which
logs to syslog or a filelf we wanted to vatch the state table in actiopmon -0 S would shav this:

ipmon-0S

01/08/1999 15:58:57.836053 STATE:NEW 100.100.100.1,53 -> 20.20.20.15,53 PR udp

01/08/1999 15:58:58.030815 STATE:NEW 20.20.20.15,123 -> 128.167.1.69,123 PR udp

01/08/1999 15:59:18.032174 STATE:NEW 20.20.20.15,123 -> 128.173.14.71,123 PR udp

01/08/1999 15:59:24.570107 STATE:EXPIRE 100.100.100.1,53 -> 20.20.20.15,53 PR udp Pkts 4 Bytes 356

01/08/1999 16:03:51.754867 STATE:NEW 20.20.20.13,1019 -> 100.100.100.10,22 PR tcp

01/08/1999 16:04:03.070127 STATE:EXPIRE 20.20.20.13,1019 -> 100.100.100.10,22 PR tcp Pkts 63 Bytes 4604
Here we see a state entry for ateenal dns requestfadur nameserer, two xntp pings to well-knan time

seners, and aery short lved outbound ssh connection.

ipmon is also capable of sting us what paaks hae been logged.For example, when using
state, youl often run into packts like this:

i pmon-ol

15:57:33.803147 ppp0 @0:2 b 100.100.100.103,443 -> 20.20.20.10,4923 PR tcp len 20 1488 -A
What does this meanhe first field is obious, it's a imestamp. Theecond field is also pretty wbus,
it’s the interfice that thisvent happened onThe third field@0:2 is something most people miss. This is
the rule that caused theeat to happen.Remembeipfstat -in ? If you wanted to knav where this
came from, you could look there for rule 2 in rule groupT@e fourth field, the little "b" says that this
paclet was blocled, and youl generally ignore this unless yoa’'logging passed paets as well, which
would be a little "p" instead. The fifth and sixth fields are pretty sqdfamatory they say where this paek
came from and where itag going. The senth ("PR") and eighth fields tell you the protocol and the ninth
field tells you the size of the pastk Thelast part, the "-A" in this case, tells you the flags that were on the
paclet; Thisone was an &£K paclet. Wty did | mention state earlierDue to the often laggy nature of
the Internet, sometimes patk will be rgenerated. Sometimemu’ll get two copies of the same paet
and your state rule whichekps track of sequence numbers wiNéadready seen this paek so it will
assume that the pastkis part of a dférent connection.Eventually this pacit will run into a real rule and
have © be dealt with. You'll often see the last paekof a session being closed get logged because the
keep state code has already torno the connection before the last patckas had a chance to reak
it to your firavall. Thisis normal, do not be alarmedAnother éample packt that might be logged:

12:46:12.470951 xI0 @0:1 S 20.20.20.254 -> 255.255.255.255 PR icmp len 20 9216 icmp 9/0

This is a ICMP router dissery broadcastWe an tell by the ICMP type 9/0.
Finally, ipmon also lets us look at theAY table in action.

i pmon-oN

01/08/1999 05:30:02.466114 @2 NAT:RDR 20.20.20.253,113 <- -> 20.20.20.253,113 [100.100.100.13,45816]

01/08/1999 05:30:31.990037 @2 NAT:EXPIRE 20.20.20.253,113 <- -> 20.20.20.253,113 [100.100.100.13,45816] Pkts 10 Bytes 455
This would be a redirection to an identd that lies tovfute ident service for the hosts behind ou&TN

since thg are typically unable to prade this service for themseds with ordinary natting.

8. SpecificApplications of IP Filter - Things that don’t fit, but should be mentioned anyway

8.1. Keep State Vith Servers and Flags.

Keeping state is a good thingytht's quite easy to maka nistake in the direction that you ant to
keep state in. Generallyyou want to hae akeep state keyword on the first rule that interacts
with a paclet for the connection. One common migtdkat is made when mixing state tracking with filter
ing on flags is this:

T For a technical presentation of the IP Filter stateful inspection engine, please see the whReglaPeteful TCP&eket Filtering in IP Filter, by
Guido \an Rooij. This paper may be found ghttp://wwwiae nl/uses/guido/papes/tcp_filteringps.gz>

-23-

block in all

pass in quick proto tcp from any to 20.20.20.20/32 port = 23 flags S

pass out all keep state
That certainly appears to alloa mnnection to be created to the telnet eeron 20.20.20.20, and the
replies to go backlf you try using this rule, yoll'see that it does ark--Momentarily Since wetre filter
ing for the SYN flag, the state entryveefully gets completed, and the deft time to lve for an incom-
plete state is 60 seconds.

We @an sole this by revriting the rules in one of tavways:

1
block in all
pass in quick proto tcp from any to 20.20.20.20/32 port = 23 keep state
block out all
or:
2)
block in all

pass in quick proto tcp from any to 20.20.20.20/32 port = 23 flags S keep state
pass out all keep state

Either of these sets of rules will result in a fully established state entry for a connection to yewur serv

8.2. CopingWith FTP

FTP is one of those protocols that you justehia St back and ask "What the heck wereythigink-
ing?" FTPhas maw problems that the fieall administrator needs to deal withWhat's worse, the prob-
lems the administrator musade are dferent between making ftp clientsovk and making ftp seers
work.

Within the FTP protocol, there aredviorms of data transfecalled actve and passie. Active frans-
fers are those where the samconnects to an open port on the client to send dadaversely passve
transfers are those where the client connects to therderrvecaie cata.

8.2.1. Runningan FTP Sewrer

In running an FTP seey, handling Active FTP sessions is easy to setujt.the same time, handling
Passive FTP sessions is a big problerfirst well cover how to handle Actve FTP, then mae o to Pas-
sive. Generally we can handle Actie FTP sessions l&we would an incoming HTTP or SMTP connec-
tion; just open the ftp port and letep state do the rest:

pass in quick proto tcp from any to 20.20.20.20/32 port = 21 flags S keep state
pass out proto tcp all keep state

These rules will allev Active FTP sessions, the most common type, to your ftpesarm 20.20.20.20.

The net challenge becomes handling€8ve FTP connectionsWeb browsers dedult to this mode,
S0 it's becoming quite popular and as such it should be suppofiee.problem with pasg mnnections
are that for eery passie mnnection, the seer starts listening on aweport (usually abee 1023). Thisis
essentially lile aeating a n& unknavn service on the seev Assuming we ha a god firavall with a
default-dery policy, that nev service will be blockd, and thus d&ssve FTP sessions are brek. Dont
despair! Theres hope yet to be had.

A persons first inclination to solving this problem might be to just open up all portgeatfi?3. In
truth, this will work:

pass in quick proto tcp from any to 20.20.20.20/32 port > 1023 flags S keep state

pass out proto tcp all keep state
This is somehat unsatisictory though. Byletting everything abae 1023 in, we actually open oursel
up for a number of potential problem®Vhile 1-1023 is the designated area for eerservices to run,
numerous programs decided to use numbers higher than 1023, such as nfsd and X.

The good nes is that your FTP segv gets to decide which ports get assigned to ymssssions.
This means that instead of opening all portsvahl®23, you can allocate ports 15001-19999 as ftp ports

-24-

and only open that range of your fi@l up. In wu-ftpd, this is done with theassive ports option in
ftpaccess . Please see the man pageftpaccess for details in wu-ftpd configurationOn the ipfil-
ter side, all we need do is setup corresponding rules:

pass in quick proto tcp from any to 20.20.20.20/32 port 15000 >< 20000 flags S keep state

pass out proto tcp all keep state
If even this solution doesh’satisfy you, you can alays hack IPF support into your FTP semor FTP
sener support into IPF

8.2.2. Runningan FTP Client

While FTP serer support is still less than perfect in JFFP client support has beerorking well
since 3.3.3.As with FTP serers, there are twtypes of ftp client transfers: pagsiand actve.

The simplest type of client transfer from theWialt’ s gandpoint is the pas@ transfer Assuming
you're keeping state on all outbound tcp sessions, y@agsinsfers will vork already If you're not doing
this alreadyplease consider the follong:

pass out proto tcp all keep state

The second type of client transfective, is a it more troublesome, ut nonetheless a sad problem.
Active transfers cause the sernio open up a second connection back to the client for datavtthflaugh.
This is normally a problem when thesed frewall in the middle, stopping outside connections from com-
ing back in. To lve this, ipfilter includes aipnat proxy which temporarily opens up a hole in the fire-
wall just for the FTP serr to get back to the clienEven if youre not usingpnat to do nat, the proxy is
still effective. The following rules is the bare minimum to add to veat configuration file €p0O should

be the interdice name of the outbound netk connection):

map ep0 0/0 -> 0/32 proxy port 21 ftp/tcp

For more details on ipfiltes internal proxies, see section 3Additionally, IPF’s ftp proxy does wrk the
"wrong way", and can be used to support a natted FTRiséot youreally don't want to do this for secu-
rity reasons.Really This is a huge security hol&ee http://wwwfalse.net/ipfilter/2001_11/0273.html for
reasons wiryou should foget you ger thought about this.

8.3. AssortedKernel Variables

There are some usefuéinel tunes that either need to be set for ipf to function, or are just generally
handy to knav about for luilding firewalls. Thefirst major one you must set is to enable ttwarding,
otherwise ipf will do ery little, as the underlying ip staclowt actually route paodts.

IP Forwarding:
openbsd:
net.inet.ip.forvarding=1

freebsd:
net.inet.ip.forvarding=1

netbsd:
net.inet.ip.forvarding=1

solaris:

ndd -set /de/ip ip_forwarding 1
Ephemeral Port Adjustment:
openbsd:

net.inet.ip.portfirst = 25000

freebsd:
net.inet.ip.portrange.first = 25000 net.inet.ip.portrange.last = 49151

-25-

netbsd:
net.inet.ip.anonportmin = 25000 net.inet.ip.anonportmax = 49151

solaris:
ndd -set /detcp tcp_smallest_anon_port 25000
ndd -set /detcp tcp_lagest_anon_port 65535

Other Useful ¥lues:

openbsd:
net.inet.ip.sourceroute = 0
net.inet.ip.directed-broadcast = 0

freebsd:
net.inet.ip.sourceroute=0
net.ip.accept_sourceroute=0

netbsd:
net.inet.ip.allavsrcrt=0
net.inet.ip.forwsrcrt=0
net.inet.ip.directed-broadcast=0
net.inet.ip.redirect=0

solaris:
ndd -set /de/ip ip_forward_directed_broadcasts 0
ndd -set /de/ip ip_forward_src_routed O
ndd -set /de&/ip ip_respond_to_echo_broadcast 0

In addition, freebsd has some ipf specific sysatiables.

net.inet.ipf.fr_flags: 0
net.inet.ipf.fr_pass: 514
net.inet.ipf.fr_active: 0
net.inet.ipf.fr_tcpidletimeout: 864000
net.inet.ipf.fr_tcpclosewait: 60
net.inet.ipf.fr_tcplastack: 20
net.inet.ipf.fr_tcptimeout: 120
net.inet.ipf.fr_tcpclosed: 1
net.inet.ipf.fr_udptimeout: 120
net.inet.ipf.fr_icmptimeout: 120
net.inet.ipf.fr_defnatage: 1200
net.inet.ipf.fr_ipfrttl: 120
net.inet.ipf.ipl_unreach: 13
net.inet.ipf.ipl_inited: 1
net.inet.ipf.fr_authsize: 32
net.inet.ipf.fr_authused: 0
net.inet.ipf.fr_defaultauthage: 600

9. Funwith ipf!

This section doeshhecessarily teach you yhing nev about ipf, hut it may raise an issue or aw
that you haen’t yet thought up on yourn, or tickle your brain in a ay that you iment something inter
esting that we heaen't thought of.

9.1. LocalhostFiltering

A long time ago at a warsity far, far avay, Wietse \énema created the tcp-wrapper package, and
eve since, it's been used to add a layer of protection to oekvwservices all wer the world. Thisis good.
But, tcp-wrappers ha flaws. For starters, theonly protect TCP services, as the name suggesiso,
unless you run your service from inetd, or youehgoecifically compiled it with libwrap and the appropri-
ate hooks, your service isrprotected. Thideaves ggantic holes in your host securityWWe can plug
these up by using ipf on the local hoBor example, my laptop often gets plugged into or dialed into net-
works that | dort specifically trust, and so, | use the fallmg rule set:

-26-

pass in quick on lo0 all
pass out quick on lo0 all

block in log all
block out all

pass in quick proto tcp from any to any port = 113 flags S keep state
pass in quick proto tcp from any to any port = 22 flags S keep state
pass in quick proto tcp from any port = 20 to any port 39999 >< 45000 flags S keep state

pass out quick proto icmp from any to any keep state

pass out quick proto tcp/udp from any to any keep state keep frags
It's been like that for quite a while, and | lien’'t suffered ay pain or anguish as a result ofvirag ipf
loaded up all the timelf | wanted to tighten it up more, | could switch to using t#d Ktp proxy and |
could add in some rules to peat spoofing. But even as it stands nw, this box is &r more restrictie
about what it presents to the local netwwand bgond than the typical host doed&his is a good thing if
you happen to run a machine that &wloa lot of users on it, and youant to mak aure oneof them
doesnt happen to start up a service yheern't supposed to.lt won't stop a malicious ha&t with root
access from adjusting your ipf rules and starting a servipeagnbut it will keep the "honest" folks hon-
est, and your weird services safe, cozy amadmveren on a malicious LAN. A big win, in my opinion.
Using local host filtering in addition to a sowteat less-restrictie "main firavall" machine can sok mary
performance issues as well galitical nightmares like "Why doesnt ICQ work?" and "Wy can't | put a
web serer on my avn workstation! Its MY WORKSTATION!!" Another very big win. Who says you
cant havesecurity and conenence at the same time?

9.2. WhatFirewall? Transparent filtering.

One major concern in setting up a\iedl is the intgrity of the firavall itself. Can somebody break
into your firavall, thereby sulbserting its ruleset?This is a common problem administrators masef par
ticularly when thg're using firevall solutions on top of their Unix/NT machineSome use it as angure-
ment for blackbox hardare solutions, under the flad notion that inherent obscurity of their closed sys-
tem increases their securityWe havea better vay.

Many network admins aredmiliar with the common ethernet bridgé&his is a deice that connects
two sparate ethernet@ments to makthem one.An ethernet bridge is typically used to connect separate
buildings, switch netwrk speeds, andxeend maximum wire lengthsHubs and switches are common
bridges, sometimes thee just 2 ported déces called repeaterdRecent ersions of Linux, OpenBSD,
NetBSD, and FreeBSD include code towah$1000 PCs into $10 bridges, to@Vhat all bridges tend to
have in common is that though thesit in the middle of a connection betweenotwachines, the ta
machines do’know the bridge is thereEnter ipfilter and OpenBSD.

Ethernet bridging tads place at Layer2 on the ISO statR.tales place on Layer3P Filter in pri-
marily concerned with Layer3ubdabbles in Layer2 by avking with interbces. Bymixing IP filter with
OpenBSDs lridge deice, we can create a fwell that is both iwisible and unreachableThe system
needs no IP address, it dogswen need to reeal its ethernet addres3.he only telltale sign that the filter
might be there is that latenés omavhat higher than a piece of cat®wd normally mak it, and that
paclets dont seem to ma& it to their final destination.

The setup for this sort of ruleset is surprisingly simple, imoOpenBSD, the first bridge dee is
namedbridge0 . Say we hae wo ehernet cards in our machine as wgl) andxI1 . To turn this
machine into a bridge, all one need do is enter thewolpthree commands:

brconfig bridge0 add xI0 add xI1 up

ifconfig xI0 up

ifconfig xI1 up
At ths point, all trafic ariving onxIl0 is sent oukll and all trafic onxI1 is sent oul0 . You'll note
that neither intedice has been assigned an IP address, nor do we need assigdl timags considered,

it's likely best we not add one at all.

Rulesets beh@ essentially the as thevadys hare. Though there is aridge0 interface, we don’
filter based on it.Rules continue to be based upon the particular agerivefe using, making it important
which netvork cable is plugged into which netvk card in the back of the machinket’s gart with some

-27-

basic filtering to illistrate what'happened. Assuntbe netvork used to look lik this:

20.20.20.1 < > 20.20.20.0/24 network hub

That is, we hee a puter at 20.20.20.1 connected to the 20.20.20.0/24onletwAll paclets from the
20.20.20.0/24 netork go through 20.20.20.1 to get to the outsideldvand vice ersa. Nav we add the
Ipf Bridge:

20.20.20.1 <------- /xI0 IpfBridge xI1/------- > 20.20.20.0/24 network hub
We dso have the following ruleset loaded on the IpfBridge host:

pass in quick all

pass out quick all
With this ruleset loaded, the netilkk is functionally identical As far as the 20.20.20.1 router is concerned,
and as dr as the 20.20.20.0/24 hosts are concerned, thedtwork diagrams are identicaNow let's
change the ruleset some:

block in quick on xI0 proto icmp
pass in quick all
pass out quick all

Still, 20.20.20.1 and 20.20.20.0/24 think the rekvis identical, ht if 20.20.20.1 attempts to ping
20.20.20.2, it will neer get a reply What's more, 20.20.20.2 an'’t even get the packt in the first place.
IPfilter will intercept the paait before it @en gets to the other end of the virtual wireVe an put a
bridged filter agwhere. Usinghis method we can shrink the net trust circle dan an indvidual host
level (given enough ethernet cards:-)

Blocking icmp from the wrld seems kind of sillyespecially if youte a sysadmin and kkpnging
the world, to traceroute, or to resize your MTUet's mnstruct a better ruleset and éaklvantage of the
original key feature of ipf: stateful inspection.

pass in quick on xI1 proto tcp keep state

pass in quick on xI1 proto udp keep state

pass in quick on xI1 proto icmp keep state

block in quick on xI0
In this situation, the 20.20.20.0/24 netk (perhaps more aptly called tkide network) can nav reach the
outside vorld, hut the outside wrld cant reach it, and it cabfigure out wl, dther. The router is accessi-
ble, the hosts are aetj but the outside wrld just cant get in. Even if the router itself were compromised,

the firavall would still be actre and successful.

So far, we've keen filtering by intedce and protocol onlyEven though bridging is concerned
layer2, we can still discriminate based on IP addréssmally we hae a £w rvices running, so our
ruleset may look li& this:

pass in quick on xI1 proto tcp keep state
pass in quick on xI1 proto udp keep state
pass in quick on xI1 proto icmp keep state
block in quick on xI1 # nuh-uh, we're only passing tcp/udp/icmp sir.
pass in quick on xI0 proto udp from any to 20.20.20.2/32 port=53 keep state
pass in quick on xIO proto tcp from any to 20.20.20.2/32 port=53 flags S keep state
pass in quick on xI0 proto tcp from any to 20.20.20.3/32 port=25 flags S keep state
pass in quick on xI0 proto tcp from any to 20.20.20.7/32 port=80 flags S keep state
block in quick on xI0
Now we havea retwork where 20.20.20.2 is a zone serving nameege?0.20.20.3 is an incoming mail

sener, and 20.20.20.7 is a web serv
Bridged IP Filter is not yet perfect, we must confess.

First, You'll note that all the rules are setup using ithedirection instead of a combination iof
andout . This is because thaut direction is presently unimplemented with bridging in OpenBSbis
was aiginally done to preent vast performance drops using multiple irdeds. Wrk has been done in
speeding it up, Ut it remains unimplementedf you really want this feature, you might try your hand at
working on the code or asking the OpenBSD people yau can help.

-28-

Second, using IP Filter with bridging meskthe use of IPE’'NAT features inadvisable, if not wao-
right dangerous.The first problem is that it euld give avay that theres a fitering bridge. The second
problem vould be that the bridge has no IP address to masquerade with, which will most assuredly lead to
confusion and perhaps arkel panic to bootYou can, of course, put an IP address on the outbound inter
face to mak NAT work, kut part of the glee of bridging is thus diminished.

9.2.1. UsingTransparent Filtering to Fix Network Design Mistakes

Many organizations started using IP well beforettieought a firevall or a subnet wuld be a good
idea. Nav they haveclass-C sized netwks or lager that include all their sesvs, their vorkstations, their
routers, cdee malers, @erything. Thehorror! Renumberingvith proper subnets, trustves, filters, and
so are in both time consuming andgensve. The pense in hardare and man hours alone is enough to
make nost oganizations unwilling to really sol/the problem, not to mention thewdatime involved. The
typical problem netark looks like this:

20.20.20.1 router 20.20.20.6 unix server
20.20.20.2 unix server 20.20.20.7 nt workstation
20.20.20.3 unix server 20.20.20.8 nt server
20.20.20.4 win98 workstation 20.20.20.9 unix workstation
20.20.20.5 intelligent switch 20.20.20.10 win95 workstation

Only it's éout 20 times layer and messier and frequently undocumentddally, you'd haveall the trust-
ing seners in one subnet, all theovk- stations in anothgand the netwrk switches in a thirdThen the
router would filter paclets between the subnetsyigg the workstations limited access to the sas; noth-
ing access to the switches, and only the sysadmiorkstation access to the t&é pot. I've reve seen a
class-C sized netwk with such coherencdP Filter can help.

To dart with, wete going to separate the roytdre workstations, and the sems. D do this wete
going to need 2 hubs (or switches) which we probably alreags; Brad an IPF machine with 3 ethernet
cards. Vé're going to put all the sesrs on one hub and all theorkstations on the otheNormally wed
then connect the hubs to each atlieen to the routerinstead, wee going to plug the router into IR’
xl0 interface, the seers into IPRSxI1 interface, and the @rkstations into IPE'xI2 interface. Oumet-
work diagram looks something &kthis:

| 2 0.20.20.2 unix server

router (20.20.20.1) | 20.20.20.3 unix server
| / | 2 0.20.20.6 unix server
| / xlI1 | 20.20.20.7 nt server
e /xI0 IPF Bridge <
xI2 | 20.20.20.4 win98 workstation

| 20.20.20.8 nt workstation
| 20.20.20.9 unix workstation
| 2 0.20.20.10 win95 workstation

Where once thereas nothing bt interconnecting wires, motheres a fitering bridge that not a single host
needs to be modified to ®lkdvantage of. Presumably we'e dready enabled bridging so the netk is
behaing perfectly normally Further we're starting dfwith a ruleset much léaur last ruleset:

pass in quick on xI0 proto udp from any to 20.20.20.2/32 port=53 keep state

pass in quick on xI0 proto tcp from any to 20.20.20.2/32 port=53 flags S keep state
pass in quick on xI0 proto tcp from any to 20.20.20.3/32 port=25 flags S keep state
pass in quick on xI0 proto tcp from any to 20.20.20.7/32 port=80 flags S keep state
block in quick on xI0

pass in quick on xI1 proto tcp keep state

pass in quick on xI1 proto udp keep state

pass in quick on xI1 proto icmp keep state

block in quick on xI1 # nuh-uh, we're only passing tcp/udp/icmp sir.

pass in quick on xI2 proto tcp keep state

pass in quick on xI2 proto udp keep state

pass in quick on xI2 proto icmp keep state

block in quick on xI2 # nuh-uh, we're only passing tcp/udp/icmp sir.

Once agin, trafic coming from the router is restricted to DNS, SM&RJ HTTR At the moment, the
seners and the wrkstations canxehange trdfc freely Depending on what kind of genization you are,
there might be something about this nativdynamic you don’like. Perhapyou dont want your vork-
stations getting access to your sgsvat all?Take thexI2 ruleset of:

-29-

pass in quick on xI2 proto tcp keep state

pass in quick on xI2 proto udp keep state

pass in quick on xI2 proto icmp keep state

block in quick on xI2 # nuh-uh, we're only passing tcp/udp/icmp sir.

And change it to:

block in quick on xI2 from any to 20.20.20.0/24

pass in quick on xI2 proto tcp keep state

pass in quick on xI2 proto udp keep state

pass in quick on xI2 proto icmp keep state

block in quick on xI2 # nuh-uh, we're only passing tcp/udp/icmp sir.

Perhaps you ant them to just get to the sers to get and send their mail with IMARE&sily done:

pass in quick on xI2 proto tcp from any to 20.20.20.3/32 port=25
pass in quick on xI2 proto tcp from any to 20.20.20.3/32 port=143
block in quick on xI2 from any to 20.20.20.0/24
pass in quick on xI2 proto tcp keep state
pass in quick on xI2 proto udp keep state
pass in quick on xI2 proto icmp keep state
block in quick on xI2 # nuh-uh, we're only passing tcp/udp/icmp sir.
Now your workstations and seevs are protected from the outsiderld, and the seers are protected from

your workstations.

Perhaps the opposite is true, maybe yauntwour vorkstations to be able to get to the sesy lut
not the outside world. Afterall, the n&t generation of xploits is breaking the clients, not the s/ In
this case, youf change thel2 rules to look more lik this:

pass in quick on xI2 from any to 20.20.20.0/24

block in quick on xI2
Now the serers hae free reign, bt the clients can only connect to the sesv W\ might want to batten
down the hatches on the sers, too:

pass in quick on xI1 from any to 20.20.20.0/24

block in quick on xI1
With the combination of these dwthe clients and sesws can talk to each othéut neither can access the
outside vorld (though the outsidearid can get to the ¥e services from earlier) The whole ruleset auld
look something lik this:

pass in quick on xI0 proto udp from any to 20.20.20.2/32 port=53 keep state
pass in quick on xI0 proto tcp from any to 20.20.20.2/32 port=53
pass in quick on xIO proto tcp from any to 20.20.20.3/32 port=25
pass in quick on xI0 proto tcp from any to 20.20.20.7/32 port=80
block in quick on xI0
pass in quick on xI1 from any to 20.20.20.0/24
block in quick on xI1
pass in quick on xI2 from any to 20.20.20.0/24
block in quick on xI2
So remembemwhen your netork is a mess of twisty IP addresses and machine classes, transparent filtered

bridges can sobra poblem that wuld otherwise beied with and perhaps somedaypéoited.

9.3. Drop-Safe Logging Wth dup-to and to.

Until now, we've been using the filter to drop paatk. Insteadf dropping them, le$ consider pass-
ing them on to another system that can do something useful with this informatamdktee logging we
can perform with ipmon.Our firavall system, be it a bridge or a routean hae a mary interfaces as we
can cram into the systemWe an use this information to create a "drop-safe" for our gtackA good
example of a use for thisauld be to implement an intrusion detection ratw For starters, it might be
desirable to hide the presence of our intrusion detection systems from our reskrsetthat we candep
them from being detected.

Before we get started, there are some operational characteristics that we needl riotenak If we
are only going to deal with bloek packts, we can use either the keyword or thefastroute
keyword. (We'll cover the diferences between theseattater) Ifwe're going to pass the paatk like we
normally would, we need to maka @py of the packt for our drop-safe log with ttdup-to keyword.

-30-

9.3.1. Thedup-to Method

If, for example, we vanted to send a cgf everything going out thel3 interface of to our drop-
safe netwrk onedO, we would use this rule in our filter list:

pass out on xI3 dup-to ed0 from any to any

You might also hae a reed to send the pagkdirectly to a specific IP address on your drop-safearktw
instead of just making a cpmwf the paclkt out there and hoping for the be3b do this, we modify our
rule slightly:

pass out on xI3 dup-to ed0:192.168.254.2 from any to any

But be varned that this method will alter the copied paskdestination address, and may thus degstine
usefulness of the logFor this reason, we recommend only using thevkm@ddress method of logging
when you can be certain that the address thatrgdogging to corresponds in somaywto what you'e
logging for (e.g.: dor’use "192.168.254.2" for logging for both your web serand your mail seey,
since youll have a lard time later trying to figure out which systerasithe taget of a specific set of pack-
ets.)

This technique can be used quitéeefively if you treat anlP Addresson your drop-safe netwk in
much the same ay that you wuld treat aMulticast Goup on the real internet. (e.g.: "192.168.254.2"
could be the channel for your http fiafanalysis system, "23.23.23.23" could be your channel for telnet
sessions, and so on.)You don't even need to actually hee this address set as an address or alias ynfan
your analysis system$\ormally, your ipfilter machine wuld need to ARP for the nedestination address
(usingdup-to d0:192.168.254.2 style, of course) it we can @oid that issue by creating a static
arp entry for thischannel"on our ipfilter system.

In general, thoughdup-to ed0 is all that is required to get aweopy of the packt over to our
drop-safe netark for logging andxeamination.

9.3.2. Theto Method

Thedup-to method does @ an immediate draback, though.Since it has to maka ©py of the
paclet and optionally modify it for its medestination, it5 going to take a while to complete all this ark
and be ready to deal with thexh@aclet coming in to the ipfilter system.

If we dont care about passing the patho its normal destination and we were going to blockyit an
way, we @n just use thio keyword to push this pae€it past the normal routing table and force it to go out
a dfferent interfice than it wuld normally go out.

block in quick on xI0 to edO proto tcp from any to any port < 1024

we useblock quick for to interface routing, because éKastroute , theto interface code will
generate tw packet paths through ipfilter when used wjthss , and likely cause your system to panic.

10. BogusNetwork Filtering, the ultimate in curr ent anti-spoofing technology

Weve spent a little bit of time tracking dm the current &st tracts of IP address space thateha
been reserd by the IAM for various reasons, or are otherwise not currently in use at the time this docu-
ment was written. Since none of these address ranges should be in use cutremdyshould be noddi-
mate reason tover see them as a source address, or to send thefic aafa destination address, right?
Right!

So without further ado, the complete list of bogus oeta:

#

s/OUTSIDE/outside-interface (eg: fxp0)

s/MYNET/network-cidr-address (eg: 1.2.3.0/24)
#

block in on OUTSIDE all

block in quick on OUTSIDE from 0.0.0.0/7 to any

-31-

block in quick on OUTSIDE from 2.
block in quick on OUTSIDE from 5.
block in quick on OUTSIDE from 1
block in quick on OUTSIDE from 2
block in quick on OUTSIDE from 2
block in quick on OUTSIDE from 3

0.0.0/8 to any
0.0.0/
0.0.0.
3.0.0.
7.0.0.
1.0.0.
block in quick on OUTSIDE from 69.0.0.
0.0.0.
2.0.0.
2.0.0.
4.0.0.
8.0.0.
00

8 to any
0/8 to any
0/8 to any
0/8 to any
0/8 to any
0/8 to any
block in quick on OUTSIDE from 7 0/7 to any
block in quick on OUTSIDE from 7 0]

block in quick on OUTSIDE from 8 0

block in quick on OUTSIDE from 8 0

block in quick on OUTSIDE from 8 0/5 to any
block in quick on OUTSIDE from 96.0.0.0/3 to any
block in quick on OUTSIDE from 127.0.0.0/8 to any
block in quick on OUTSIDE from 128.0.0.0/16 to any
block in quick on OUTSIDE from 128.66.0.0/16 to any
block in quick on OUTSIDE from 169.254.0.0/16 to any
block in quick on OUTSIDE from 172.16.0.0/12 to any
block in quick on OUTSIDE from 191.255.0.0/16 to any
block in quick on OUTSIDE from 192.0.0.0/19 to any
block in quick on OUTSIDE from 192.0.48.0/20 to any
block in quick on OUTSIDE from 192.0.64.0/18 to any
block in quick on OUTSIDE from 192.0.128.0/17 to any
block in quick on OUTSIDE from 192.168.0.0/16 to any
block in quick on OUTSIDE from 197.0.0.0/8 to any
block in quick on OUTSIDE from 201.0.0.0/8 to any
block in quick on OUTSIDE from 204.152.64.0/23 to any
block in quick on OUTSIDE from 219.0.0.0/8 to any
block in quick on OUTSIDE from 220.0.0.0/6 to any
block in quick on OUTSIDE from 224.0.0.0/3 to any
block in quick on OUTSIDE from MYNET to any

Your pass rules come here...

/5 to any
/7 to any
/6 to any

block out on OUTSIDE all

block out quick on OUTSIDE from IMYNET to any

block out quick on OUTSIDE from MYNET to 0.0.0.0/7

block out quick on OUTSIDE from MYNET to 2.0.0.0/8

block out quick on OUTSIDE from MYNET to 5.0.0.0/8

block out quick on OUTSIDE from MYNET to 10.0.0.0/8
block out quick on OUTSIDE from MYNET to 23.0.0.0/8
block out quick on OUTSIDE from MYNET to 27.0.0.0/8
block out quick on OUTSIDE from MYNET to 31.0.0.0/8
block out quick on OUTSIDE from MYNET to 69.0.0.0/8
block out quick on OUTSIDE from MYNET to 70.0.0.0/7
block out quick on OUTSIDE from MYNET to 72.0.0.0/5
block out quick on OUTSIDE from MYNET to 82.0.0.0/7
block out quick on OUTSIDE from MYNET to 84.0.0.0/6
block out quick on OUTSIDE from MYNET to 88.0.0.0/5
block out quick on OUTSIDE from MYNET to 96.0.0.0/3
block out quick on OUTSIDE from MYNET to 127.0.0.0/8
block out quick on OUTSIDE from MYNET to 128.0.0.0/16
block out quick on OUTSIDE from MYNET to 128.66.0.0/16
block out quick on OUTSIDE from MYNET to 169.254.0.0/16
block out quick on OUTSIDE from MYNET to 172.16.0.0/12
block out quick on OUTSIDE from MYNET to 191.255.0.0/16
block out quick on OUTSIDE from MYNET to 192.0.0.0/19
block out quick on OUTSIDE from MYNET to 192.0.48.0/20
block out quick on OUTSIDE from MYNET to 192.0.64.0/18
block out quick on OUTSIDE from MYNET to 192.0.128.0/17
block out quick on OUTSIDE from MYNET to 192.168.0.0/16
block out quick on OUTSIDE from MYNET to 197.0.0.0/8
block out quick on OUTSIDE from MYNET to 201.0.0.0/8
block out quick on OUTSIDE from MYNET to 204.152.64.0/23
block out quick on OUTSIDE from MYNET to 219.0.0.0/8
block out quick on OUTSIDE from MYNET to 220.0.0.0/6
block out quick on OUTSIDE from MYNET to 224.0.0.0/3

Your pass rules come here...

If you're going to use these, we suggest that you becamiidr with whois.arin.net andelep an occa-
sional ge on these, as the I1AN sn't going to notify you when theallocate one of these to awmeorpora-
tion or something.You havebeen varned.

