UNIFIED o

MODELING
LANGUAGE

Object Constraint
Language Specification

version 1.1
1 September 1997

Rational Software s Microsoft s Hewlett-Packard = Oracle
Sterling Softwares MCI Systemhouse s Unisyss ICON Computing
IntelliCorp m i-Logix m IBM = ObjecTime s Platinum Technology = Ptech
Taskon = Reich Technologiess Softeam

ad/97-08-08

Copyright © 1997 IBM Corporation.

Copyright © 1997 Rational Software Corporation.
Copyright © 1997 Microsoft Corporation.
Copyright © 1997 Hewlett-Packard Company.
Copyright © 1997 Oracle Corporation.

Copyright © 1997 Sterling Software.

Copyright © 1997 MCI Systemhouse Corporation.
Copyright © 1997 Unisys Corporation.

Copyright © 1997 ICON Computing.

Copyright © 1997 IntelliCorp.

Copyright © 1997 i-Logix.

Copyright © 1997 ObjecTime Limited.

Copyright © 1997 Platinum Technology Inc.
Copyright © 1997 Ptech Inc.

Copyright © 1997 Taskon A/S.

Copyright © 1997 Reich Technologies.

Copyright © 1997 Softeam.

Photocopying, electronic distribution, or foreign-language translation of this document is
permitted, provided this document is reproduced in its entirety and accompanied with this entire
notice, including the following statements:

The most recent updates on the Unified Modeling Language are available via the
worldwide web:http://mww.rational.com/uml.

A free OCL Parser and the most recent information on the Object Constraint Language
are available via the worldwide wettttp: //www.softwar e.ibm.com/ad/ocl.

The UML logo is a trademark of Rational Software Corp.

Object Constraint Language Specification, v 1.1

Contents

1

OVERVIEW 1
00 A 1V |V T USSP UPTURSORU 1
12 WHEIETO USE OCL ...ttt ettt bttt bbbt bt a e et e b e b sb e e b e e st e st ene e s enbesheebesbesneennens 2
INTRODUCTION 2
pZ R = = oo SO P TP PRPRROON 2
2.2 EXAMPIE ClaSS DIBOIAIMeiueueeuertieeterieeete sttt ettt b et b et eb s e e bt sb e e es e s b e e e bt se e e ebeseeb e s b e s ebe s b e s enenean 2
CONNECTIONWITH THE UML METAMODEL 3
Nt s U RTP USSP 3
I 1 0177 =0 LSOV SRR URURPRR 3
3.3 Pre- and POSICONGITIONS.......coueiueeiirieieie ettt sttt b et st e b bt ehe et e e e b see s e nbesbesbesaesbeeneenean 4
I €11 o UV TUPURURURR 4
RS €= 1 = I T o =7 o] 4
BASIC VALUESAND TYPES 4
4.1 TypeSTromthe UML MO ...t bbbt 5
4.2 ENUMETBEION TYPES .ueitiititetirtitetesttt ettt st et be bbbt b et s e b et h b e s e b e bt e bt b et e b e b et e b e s b e e e b e be e b ee 5
B Y oL X o 0] 47 9o SO SRTROTSURO 5
A4 RELYPING OF CBSLING ...eeveeenertirteiieteriee ettt ettt a ettt e st b e b he b e s e st s b e s e st e b et e st b et s besbe e ebesbe e s ee 6
A5 PreCEUENCE RUIES ...ttt sttt s et e e s te s tesaeese e e e s eesaeseesbesae et e e neeneeneensenseseensenneanenneenean 6
T 0] 1 10 0 | SRR 7
A U 107 L= 111 o IR - =SS 7
OBJECTSAND PROPERTIES 7
TN R o (00 1 11 OSSR 7
5.2 Properties: AttHOULESooiieeeecece ettt et e ee st e e st e te e ae s e e saeenteereeneeereenre e reenrenn 8
5.3 PrOpertieS: OPEraliONS........ccieeieeiteeitieteeeesteeseestesteseeseesaeesseeseasseasaesseesteeteensesseesseesaeesseeseaseesseenseesennses 8
5.4 Properties: Association ENds and NaVigationcceecieiiiienieseese ettt e e e sse e 8
5,5 Navigation tO ASSOCIEHION TYPES ...uecieiieiiesieeiiesteeitesteseesteesteeteetessaesseesseesseassessssssesseesseessesseesseensessenns 10
5.6 Navigation from ASSOCIAtION CIASSES.........cciiieiiiiiiiei e cie st e s ee s e s e ste e teesae e e sreesreesteeeesseenneennens 10
5.7 Navigation through Qualified ASSOCIBLIONS...........ccceieeiieiieeie e rre e sae e s reeeeste e enreennens 11
5.8 Using Pathnames for Packages and ProPerti€s.........couieiiiererinireeie et st e 11
5.9 Predefined FEatures 0N all ODJECES........coiiiiiiieieie ettt e b e sb bbb enes 12
510 Features on TYPES TREMSEIVES........oouiiii e e et b e bbb b enes 12
oI B R O = 1o OSSPSR 12
5.12 Collections Of COHBCLIONS.........ciiiirieeeieieeee et ettt e b et sbesbea e se e be e sbesneeneenes 13
5.13 Collection Type Hierarchy and Type Conformance RUIES............ccoiieriienieienieese e 14
5.14 Previous Values in POStCONMITIONS.........co.iiiiiiirieiieie ettt bbb st b e enes 14
COLLECTION OPERATIONS 15
6.1 Select aNd REECT OPEraliONScoveeetirtiieieitereeie ettt sttt b et b e bbb et e s b e e et e sbebesee e ebeseeneeren 15
6.2 COlECE OPEIGLHIONueeitertiieteite ettt ettt ettt b bbbt b e b et b e s b et eb e s e et e b e s b et ek e sb et ebesee st ebeseeneeben 17
6.3 FOFAII OPEIELION.cueecteiteieterteiet sttt sttt sttt ebe bt eb e s bt eb e s b et e b e sb et ebe s e et et e s b et ebesbe e ebeseeneebeseeneerens 18
6.4 EXISES OPEIELIONeiveeetiitieeterteseet sttt s bbbttt e e b s b et eb e sb et eb e s b e e e b e sb et ebe s be e eb e s b et ekt sb e e ebe s e et ebe e e e b 18
6.5 HLErAE OPEIELION. ... ctieetertieeteite ettt ettt ettt ettt b bt eb s b e e eb e s b e e e b e s b et eb e s b et eb e s b et ekt sb e e ebe s b et ebenee et 19
PREDEFINED OCL TYPES 19
0 R = 7= = T 1Y o - PSS 19
7.2 COlECON-REGIED TYPES....cccuieiicieetie ettt rte st st e st e e te et e st e s te e be e tesntessaesaeesseessesseesaeesseensesnnenns 25
GRAMMAR FOR OCL 31

Object Constraint Language Specification, v 1.1 iii

1. OVERVIEW

This document introduces and defines the Object Constraint Language (OCL), aformal language
to express side effect-free constraints. Users of the Unified Modeling Language and other
languages can use OCL to specify constraints and other expressions attached to their models.

OCL was used in the UML Semantics document to specify the well-formedness rules of the UML
metamodel. Each well-formedness rule in the static semantics sections in the UML Semantics
document contains an OCL expression, which is an invariant for the involved class. The grammar
for OCL is specified at the end of this document. A parser generated from this grammar has
correctly parsed all the constraints in the UML Semantics document, a process which improved
the correctness of the specifications for OCL and UML.

1.1 WHY OCL?

In obj ect-oriented modeling a graphical model, like a class model, is not enough for a precise and
unambiguous specification. Thereis a need to describe additional constraints about the objectsin
the model. Such constraints are often described in natural language. Practice has shown that this
will always result in ambiguities. In order to write unambiguous constraints, so-called formal
languages have been devel oped. The disadvantage of traditional formal languagesisthat they are
useable to persons with a string mathematical background, but difficult for the average business
or system modeler to use.

OCL has been developed to fill thisgap. Itisaformal language that remains easy to read and
write. It has been developed as a business modeling language within the IBM Insurance division,
and has its roots in the Syntropy method.

OCL isapure expression language. Therefore, an OCL expression is guaranteed to be without
side effect; it cannot change anything in the model. This means that the state of the system will
never change because of an OCL expression, even though an OCL expression can be used to
specify a state change, e.g. in a post-condition. All values for all objects, including all links, will
not change. Whenever an OCL expression is evaluated, it simply delivers avalue.

OCL isnot a programming language, so it is not possible to write program logic or flow control
in OCL. You cannot invoke processes or activate non-query operations within OCL. Because
OCL isamodeling language in the first place, not everything in it is promised to be directly
executable.

OCL isatyped language, so each OCL expression has atype. In acorrect OCL expression all
types used must be type conformant. For example, you cannot compare an Integer with a String.
Types within OCL can be any kind of Classifier within UML.

As amodeling language, all implementation issues are out of scope and cannot be expressed in

OCL. Each OCL expression is conceptually atomic. The state of the objectsin the system cannot
change during evaluation.

Object Constraint Language Specification, v 1.1 1

1.2 WHERE TO USE OCL

OCL can be used for a number of different purposes:

To specify invariants on classes and types in the class model.

To specify type invariant for Stereotypes.

To describe pre- and post conditions on Operations and Methods
To describe Guards

As anavigation language

To specify constraints on operations:
operation = expression

Where operation is the name of the operation and expression the constraint. Because
operations may have parameters, the constraint may also have one or more parameters as
in one of the following:

operation(a, b) = expression

operation(a : Typel, b : Type2) = expression
The parameters of the operation, in this example a and b, can be used in the expression at
the right-hand side of the equals sign. Operations can also be described by arecursive
expression. It is the modeler’s task to make sure that the recursion is well defined. An
operation constraint can also be read as a definition of the operation, where the right-
hand side of the equals sign determines the value the operation will return.

Within theUML Semantics document, OCL is used in the well-formedness rules as invariants on
the meta-classes in the abstract syntax. At several places it is also used to define ‘additional’
operations, which are used in the well-formedness rules.

2. INTRODUCTION

2.1 LEGEND

Text written in the courier typeface like below is an OCL expression:

"This is an OCL expression’

The underlined word before an OCL expression determines the context for the expression:
TypeNane

"this is an OCL expression in the context of TypeNane’

Keywords of OCL are written in boldface within the OCL expression in this document. The
boldface has no formal meaning, but is used to make the expressions more readable in this
document. OCL expressions are written using only ASCII characters.

Words inltalics within the main text of the paragraphs refer to parts of OCL expressions.

2.2 EXAMPLE CLASS DIAGRAM

The diagram below is used in the examples in this document.

Object Constraint Language Specification, v 1.1

Bank

accountNumber : Integer

0..1
customer
Person manager 0.~
- - - Company
isMarried : Boolean managedCompanies

name : String

i | 1 Bool
isunemployed cofean numberOfEmployees : Intege

birthDate : Date
age :Integer
firstName : String 0..* 0..*
lastName : String

sex :enum{ male, female}

employee employer

stockPrice()

wife
income (Date) : Integer 0..1

husband| 0..1

Job
Marriage title : String
place : STring startD ate : Date

date : Date salary : Integer

3. CONNECTION WITH THE UML METAMODEL

3.1 SELF

Each OCL expression iswritten in the context of an instance of a specific type. In an OCL
expression the name self is used to refer to the contextual instance.

3.2 INVARIANTS

The OCL expression can be part of an Invariant, which is a Constraint stereotyped with

«invariant». When the Invariant is associated with a Classifier, this is called the type in this
document. The expression then is an invariant of the type and must be true for all instances of
that type at any time. If the context is Company, tatirefers to an instance of Company. In

the expression

sel f. nunber O Enpl oyees
self is an instance of type Company. We can seedfias the object from where we start the
expression.
In this document, the type of the contextual instance of an OCL expression, which is part of an
Invariant, is written with the name of the type underlined as follows:

Conpany
sel f. nunber O Enpl oyees

In most caseself can be left out, because the context is clear, as in the above examples.

As an alternative for self, a different name can be defined playing the part of self:

Object Constraint Language Specification, v 1.1 3

c : Conmpany
c. nurber O Enpl oyees

Thisisidentical to the previous example using self.

3.3 PRE- AND POSTCONDITIONS

The OCL expression can be part of a Precondition or Postcondition, which are Constraints
stereotyped with respectively «precondition» and «postcondition». The Precondition or
Postcondition on Operation or Method. In this case, the expression is a pre- or postcondition on
the Operation or Method. The contextual instasstfethen is of the type which owns the
operation as a feature. The notation used in this document is to underline the type and operation
declaration, and put labels ‘pre:’ and ‘post:’ before Preconditions and Postconditions

Typenane: : oper ati onNanme(paraneterl : Typel, ...): ReturnType

pre : parameterl > ...
post: result = ...

The name self can be used in the expression referring to the object on which the operation was
called, and the name result is the name of the returned object, if there is any. The names of the

parameters (parametertl,) can also be used in the OCL expression. In the example diagram we
can write:

Person::income(d : Date) : Integer
post: result = ...some function of self and parameter1 ...

3.4 GUARDS

The OCL expression can be part of a Guard. In this case self refers to the enclosing Classifier.
No examples of guards are given in this document.

3.5 GENERAL EXPRESSIONS

Any OCL expression can be used as the value for an attribute of the UML class Expression or
one of its subtypes. In this case, the semantics document describes the meaning of the expression.

4. BASIC VALUES AND TYPES

In OCL, a number of basic types are predefined and available to the modeler at all time. These
predefined value types are independent of any object model and part of the definition of OCL.

The most basic valuein OCL is avalue of one of the basic types. Some basic types used in the
examplesin this document, with corresponding examples of their values, are:

type values

Boolean true, false

Integer 1, 2, 34, 26524, ...
Real 15,314, ..

String To beor not to be...’

4 Object Constraint Language Specification, v 1.1

OCL defines anumber of operations on the predefined types. The next table gives some
examples of the operations on the predefined types. In section 7 the complete list of al
operationsis given.

type operations

Integer * + -/, abs

Red * + -/, floor

Boolean and, or, xor, not, implies, if-then-else
String toUpper, concat

At the end of this document the complete list of operations provided for each type is described.
Collection, Set, Bag and Sequence are basic types as well; their specifics will be described in the
upcoming sections.

4.1 TYPES FROM THE UML MODEL

Each OCL expression iswritten in the context of a UML model, a number of types/classes their
features and associations and their generalizations. All types/classes from the UML model are
typesin OCL that is attached to the model.

4.2 ENUMERATION TYPES

As shown in the example diagram, new enumeration types can be defined in amodel by using:
enun{ val uel, value2, value3 }

The values of the enumeration (valuel, ...) can be used within expressions.

As there might be a name conflict with attribute names being equal to enumeration values, the
usage of an enumeration value is syntactically expressed with an additional # symbol in front of
the value:

#val uel

The type of an enumeration attribute is Enumeration, with restrictions on the values for the
attribute.

4.3 TYPE CONFORMANCE

OCL isatyped language and the basic value types are organized in a type hierarchy. This
hierarchy determines conformance of the different types to each other. Y ou cannot, for example,
compare an Integer with a Boolean or a String.

An OCL expression in which all the types conformisavalid expression. An OCL expressionin
which the types don’t conform is an invalid expression. It contaiyggeaconformance error. A
typetypel conforms to a typg/pe2 when an instance ¢fpel can be substituted at each place
where an instance ofpe2 is expected. The type conformance rules for types in the class
diagrams are simple.

» Each type conforms to its supertype
» Type conformance is transitive:tifpel conforms taype2, andtype2 conforms taypes,
thentypel conforms taypes3.

Object Constraint Language Specification, v 1.1 5

The effect of thisisthat atype conformsto its supertype, and all the supertypes above.

The type conformance rules for the value types are:

Type Conformsto/

I's subtype of
Set Collection
Sequence Collection
Bag Collection
Integer Redl

The conformance relation between the collection types only holdsif they are collections of
element types that conform to each other. See 5.13 for the compl ete conformance rules for
collections.

In the next table some examples of valid and invalid expressions are shown:

OCL expression valid? error

1+2*34 yes

1 + 'motorcycle no type Integer does not conform to type
String

23 * false no type Integer does not conform to Boolean

12+ 135 yes

4.4 RE-TYPING OR CASTING

In some circumstancesit is desirable to use a property of an object that is defined on a subtype of
the current known type of the object. Because the property is not defined on the current known
type this results in atype conformance error.

When it is certain that the actual type of the object is the subtype, the object can be re-typed
using the operation ocl AsType(Ocl Type). This operation results in the same object, but the known

type is the argument OclType. When there is an object object of type Typel and Type2 is another
type, it is allowed to write:

obj ect . ocl AsType(Type2) --- evaluates to object with type Type2
An object can only be re-typed to one of its subtype; therefore, in the example, Type2 must be a
subtype of Typel.

If the actual type of the object is not equal to the type to which it isre-typed, the expression is
undefined (see 4.7).

4.5 PRECEDENCE RULES

The precedence order for the operationsin OCL is:

» dot and arrow operations have highest precedence
e unary ‘not’ and unary minus ‘-’
e *and’/

6 Object Constraint Language Specification, v 1.1

* '+’ and binary ‘-’

* ‘and’, ‘or’ and ‘xor’

* ‘implies’

* ‘if-then-else-endif’

o ‘< =" '>=" and =

Parenthesis ‘(" and ‘)’ can be used to change precedence.

4.6 COMMENT

Comments in OCL are written after two dashes. Everything after the two dashes up to and
including the end of line is comment. For example:

-- this is a coment

4.7 UNDEFINED VALUES

Whenever an OCL expression is being evaluated, there is a possibility that one or more of the
queries in the expression are undefined. If this is the case, then the complete expression will be
undefined.

There are two exceptions to this for the boolean operators:

e True OR-ed with anything is True
» False AND-ed with anything is False

The above two rules are valid irrespective of the order of the arguments and the above rules are
valid whether or not the value of the other sub-expression is known.

5. OBJECTS AND PROPERTIES

OCL expressions can refer to types, classes, interfaces, associations (acting as types) and
datatypes. Also all attributes, association-ends, methods and operations without side-effects that
are defined on these types etc. can be used. In a class model, an operation or method is defined to
be side effect free if thisQuery attribute of the operations is true. For the purpose of this

document, we will refer to attributes, association-ends, and side-effect-free methods and
operations as beingoperties. A property therefore is one of:

an Attribute,

* an AssociationEnd,

» an Operation withsQuery being true,
a Method withisQuery being true

5.1 PROPERTIES

The value of a property on an object that is defined in a class diagram is specified by a dot
followed by the name of the property:

AType
sel f. property

Object Constraint Language Specification, v 1.1 7

If self is areference to an object, then self.property is the value of the property property on self.

5.2 PROPERTIES:. ATTRIBUTES

For example, the age of a Person iswritten as

Per son
sel f. age

The value of this expression is the value of the age attribute on the Person self. The type of this
expression is the type of the attribute age, which is the basic type Integer.

With of attributes, and the operations defined on the basic value types we can express
calculations etc. over the class model. For example, a business rule might be “the age of a Person
is always greater or equal to zero.” This can be stated as the invariant:

Per son
self.age >= 0

5.3 PROPERTIES: OPERATIONS

Operations may have parameters. For example, in the example diagram shown earlier, a Person
object has an income expressed as a function of the date. This operation would be accessed as
follows, for a PersoaPerson and a dataDate:

aPer son. i ncone(abDat e)
The operation itself could be defined by a postcondition constraint. This is a constraint that is

stereotyped as «postcondition». The object that is returned by the operation can be referred to by
result. It takes the following form:

Person::inconme (d: Date) : Integer
post: result = -- sone function of d and other properties of person

The right-hand-side of this definition may refer to the operation being defined; i.e. the definition
may be recursive, as long as the recursion is well defined. The tyemildfis the return type of
the operation, which is Integer in the above example.

To refer to an operation or a method that doesn’t take a parameter, parenthesis with an empty
argument list are used:

Conmpany
sel f.stockPrice()

5.4 PROPERTIES: ASSOCIATION ENDS AND NAVIGATION

Starting from a specific object, we can navigate an association on the class diagram to refer to
other objects and their properties. To do so, we navigate the association by using the opposite
association-end:

obj ect . rol enane
The value of this expression is the set of objects on the other siderofefane association. If
the multiplicity of the association-end has a maximum of one (“0..1” or “1"), then the value of

this expression is an object. In the example class diagram, when we start in the context of a
Company (i.esdlf is an instance of Company), we can write:

Conmpany

Object Constraint Language Specification, v 1.1

sel f. manager -- is of type Per son
sel f. enpl oyee -- is of type Set (Per son)

The evaluation of the first expression will result in an object of type Person, because the
multiplicity of the association is one. The evaluation of the second expression will result in a Set
of Persons. By default, navigation will result in a Set. When the association on the Class
Diagram is adorned with { ordered} , the navigation results in a Sequence.

Collections, like Sets, Bags and Sequences, are predefined typesin OCL. They have alarge

number of predefined operations on them. A property of the collection itself is accessed by using

an arrow - >’ followed by the name of the property. The following example is in the context of a
person:

Per son
sel f. empl oyer - >si ze

This applies thaize property on the Setlf.employer, which results in the number of employers
of the Persoself.

Per son
sel f. empl oyer - >i sEnpty

This applies thésEmpty property on the Sestlf.employer. This evaluates to true if the set of
employers is empty, and false otherwise.

5.4.1 Missing Rolenames

Whenever a rolename is missing at one of the ends of an association, the name of the type at the
association end, starting with a lowercase character is used as the rolename. If this results in an
ambiguity the rolename is mandatory. This is the case with unnamed rolenames in on reflexive
associations. If the rolename is ambiguous, then it cannot be used in OCL.

5.4.2 Navigation over Associations with Multiplicity Zero or One

Because the multiplicity of the rofeanager is one self. manager is an object of type Person.

Such a single object can be used as a Set as well. It then behaves as if it is a Set containing the
single object. The usage as a set is done through the arrow, followed by a property of Set. This is
shown in the following example:

Conpany
self.manager->size -- ‘self.manager’ is used as Set, because the

-- arrow
-- is used to access the ‘size’ property on Set
-- This expresin result in 1

self.manager->foo -- ‘self.manager’ is used as Set, because the
--arrow is used to access the ‘foo’ property on
-- Set. This expresion is i ncorrect, since ‘foo’
-- is not a defined property of Set.

self. manager.age -- ‘self. manager’ is used as Person, because the
-- dot
-- is used to access the ‘age’ property of Person

In the case of an optional (0..1 multiplicity) association, thisis especially useful to check whether
there is an object or not when navigating the association. In the example we can write:

Object Constraint Language Specification, v 1.1 9

Conpany
self.wife->notEnpty inplies self.wife.sex = female

5.4.3 Combining Properties

Properties can be combined to make more complicated expressions. An important ruleisthat an
OCL expression always evaluates to a specific object of a specific type. Upon this result, one can
always apply another property. Therefore, each OCL expression can be read and evaluated |eft-
to-right.

Following are some invariants that use combined properties on the example class diagram:

[1] Married people are of age >= 18
self.wi fe->notEnpty inplies self.wfe.age >= 18 and
sel f. husband->not Enpty inplies self.husband. age >= 18
[2] acompany has at most 50 employees

sel f. empl oyee- >si ze <= 50

[3] A marriageis between afemale (wife) and male (husband)
self.w fe.sex = #fenmal e and
sel f. husband. sex = #nal e

[4] A person can not both have awife and a husband

not ((self.wfe->size = 1) and (sel f. husband->size = 1))

5.5 NAVIGATION TO ASSOCIATION TYPES

To specify navigation to association classes (Job and Marriage in the example), OCL uses adot
and the name of the association class starting with alowercase character:

Per son
self.job

This evaluates to a Set of all the jobs a person has with the companies that are his/her employer.
In the case of an association class there is no explicit rolename in the class diagram. The name
job used in this navigation is the name of the association class starting with alowercase
character, similar to the way described in the section “Missing Rolenames” above.

5.6 NAVIGATION FROM ASSOCIATION CLASSES

We can navigate from the association class itself to the objects that participate in the association.
This is done using the dot-notation and the role-names at the association-ends.
Job

~ sel f. enpl oyer
sel f. empl oyee

Navigation from an association class to one of the objects on the association will always deliver
exactly one object. This is a result of the definition of AssociationClass. Therefore the result of
this navigation is exactly one object, although it can be used as a Set using the ayrow (

10 Object Constraint Language Specification, v 1.1

5.7 NAVIGATION THROUGH QUALIFIED ASSOCIATIONS

Qualified associations use one or more qualifier attributes to select the objects at the other end of
the association. To navigate them, we can add the values for the qualifiers to the navigation. This
is done using square brackets, following the role-name. It is permissible to leave out the qualifier
values, in which case the result will be all objects at the other end of the association.

Bank
sel f. cust omer -- results in a Set(Person) containing
-- all custoners of the Bank
sel f. custoner[8764423] -- results in one Person, having account

- nunber 8764423

If there is more than one qualifier attribute, the values are separated by commas. It is not
permissible to partialy specify the qualifier attribute values.

5.8 USING PATHNAMES FOR PACKAGES AND PROPERTIES

Within UML, different types are organized in packages. OCL provides away of explicitly
referring to types in other packages by using a package-pathname prefix. The syntax is a package
name, followed by a double colon:
Packagenane: : Typenane
This usage of pathnames s transitive and can also be used for packages within packages:
Packagenanel: : Packagenane2: : Typenane
Whenever properties are redefined within a type, the property of the supertypes can be accessed

using the same path syntax. Whenever we have a class B, as a subtype of class A, and a property
pl of both A and B. We can write:

B
“self.A:pl -- accesses the pl property defined in A
self.B::pl -- accesses the pl property defined in B

The following shows an example where such a pathname is needed:

source |
*

ModelElement | t@roet

*

JAN

Note Dependency

vaue: Uninterpreted

In thismodel fragment there is an ambiguity with the OCL expression on Dependency:

Dependency
sel f.source

Object Constraint Language Specification, v 1.1 11

This can either mean normal association navigation, which is inherited from Model Element. It
might also mean navigation through the dotted line as an association class. Both possible
navigations use the same role-name, so thisis always ambiguous. Using the pathname we can
distinguish between them with:

Dependency

sel f . Dependency: : sour ce
sel f. Model El ement : : sour ce

5.9 PREDEFINED FEATURES ON ALL OBJECTS

There are several features that apply to all objects, and are predefined in OCL. These are:

ocl Type : Ccl Type
ocl I sTypeOf (t : Ccl Type) : bool ean
ocl I skindOf (t : Ccl Type) : bool ean

The feature ocl Type resultsin the type of an object. For example, the expression

Per son
sel f. ocl Type

resultsin Person. The type of thisis OclType, a predefined type within the OCL language. (NB:
not Person, which is the type of self)

The operation isTypeOf resultsin true if the type of self and t are the same. For example:

Per son
sel f.ocl I sTypeOf (Person) -- is true
sel f.ocl I sTypeOf (Conpany) -- is fal se

The above feature deals with the direct type of an object. The ocllsKindOf feature determines
whether t is either the direct type or one of the supertypes of an object.

5.10 FEATURES ON TYPES THEMSELVES

All properties discussed until now in OCL are properties on instances of classes. The types are
either predefined in OCL or defined in the class model. In OCL, it is also possible to use features
defined on the types/classes themselves. These are, for example, the class-scoped features
defined in the class model. Furthermore, several features are predefined on each type.

The most important predefined feature on each type is allInstances, which results in the Set of all
instances of the type. If we want to make sure that all instances of Person have unigue names we
can write:

Person. al | I nstances->forAll (pl, p2 | pl <> p2 inplies pl.nane <> p2.nane)

The Person.allInstancesis the set of all personsand is of type Set(Person).

5.11 COLLECTIONS

12

Navigation will most often result in a collection; therefore, the collection types play an important
rolein OCL expressions.

The type Collection is predefined in OCL. The Collection type defines alarge number of
predefined operations to enable the OCL expression author (the modeler) to manipulate

Object Constraint Language Specification, v 1.1

collections. Consistent with the definition of OCL as an expression language, collection
operations never change collections; isQuery is always true. They may result in a collection, but
rather than changing the original collection they project the result into a new one.

Collection is an abstract type, with the concrete collection types as its subtypes. OCL
distinguishes three different collection types: Set, Sequence, and Bag. A Set is the mathematical
set. It does not contain duplicate el ements. A Bag islike a set, which may contain duplicates, i.e.
the same element may be in abag twice or more. A Sequenceislike a Bag in which the elements
are ordered. Both Bags and Sets have no order defined on them. Sets, Sequences and Bags can be
specified by aliteral in OCL. Curly brackets surround the elements of the collection, elementsin
the collection are written within, separated by commas. The type of the collection iswritten

before the curly brackets:

Set { 1, 2, 5, 88}

Set { '"apple’ , 'orange', ’'strawberry’ }
A Sequence:

Sequence { 1, 3, 45, 2, 3}

Sequence { 'ape’, 'nut’ }
A bag:

Bag {1, 3, 4, 3, 5}

Because of the usefulness of a Sequence of consecutive Integers, there is a separate literal to
create them. The elementsinside the curly brackets can be replaced by an interval specification,
which consists of two expression of type Integer, Int-exprl and Int-expr2, separated by ‘... This
denotes all the Integers between the valuéatedxpr 1 andint-expr2, including the values of
Int-exprl andlnt-expr2 themselves:

Sequence{ 1..(6 + 4) }

Sequence{ 1..10 }

-- are both identical to
Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

The complete list of Collection operations is described at the end of this document.

Collections can be specified by a literal, as described above. The only other way to get a
collection is by navigation. To be more precise, the only way of getting a Set, Sequence, or Bag

is:
+ a literal, this will result in a Set, Sequence or Bag:
Set {1, 2 3,5, 7, 11, 13, 17}
Sequence {1, 2, 3, 5, 7, 11, 13, 17}
Bag {1, 2, 3, 2, 1}

* a navigation starting from a single object can result in a collection e.qg.:
Conpany
sel f. enpl oyee

» operations on collections may result in new collections. E.g.:
col I ecti onl->union(coll ection2)

5.12 COLLECTIONS OF COLLECTIONS

Within OCL, all Collections of Collections are automatically flattened. Therefore the following
two expressions have the same value:

Object Constraint Language Specification, v 1.1 13

Set{ Set{1, 2}, Set{3, 4}, Set{5, 6} }
Set{ 1, 2, 3, 4, 5, 6}

5.13 COLLECTION TYPE HIERARCHY AND TYPE CONFORMANCE
RULES

In addition to the type conformance rules in section 4.3 the following rules hold for all types,
including the collection types:

» Every type Collection (X) is a subtype of OclAny. The types Set (X), Bag (X) and
Sequence (X) are all subtypes of Collection (X).

Type conformance rules are as follows for the collection types:

» Typel conformsto Type2 when they are identical (standard rule for all types).

» Typel conformsto Type2 when it is a subtype of Type2 (standard rule for all types).

* Collection(Typel) conformsto Collection(Type2), when Typel conforms to Type2.

» Type conformanceistransitive: if Typel conforms to Type2, and Type2 conforms to Type3,
then Typel conformsto Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:

Set (Bicycle) conforns to Set(Transport)
Set (Bicycle) conforns to Collection(Bicycle)
Set (Bicycle) conforns to Collection(Transport)

Note that Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around. They are
both subtypes of Collection(Bicycle) at the same level in the hierarchy.

5.14 PREVIOUS VALUES IN POSTCONDITIONS

As stated in section 3.3, OCL can be used to specify pre- and post-conditions on Operations and
Methodsin UML. In a postcondition, the expression can refer to two sets of values for each
property of an object:

* thevalue of aproperty at the start of the operation or method
* the value of a property upon completion of the operation or method

The value of a property in a postcondition is the values upon completion of the operation. To
refer to the value of a property at the start of the operation, one has to postfix the property-name
with the commercial at sign ‘@’, followed by the keyword ‘pre’:

Per son: : bi rt hdayHappens()

post: age = age@re + 1

The propertyage refers to the property of the instance of Person on which executes the
operation. The properge@pre refers to the value of the propesge of the Person that
executes the operation, at the start of the operation.

If the property has parameters, the ‘@pre’ is postfixed to the propertyname, before the
parameters.

Conpany: : hi reEnpl oyee(p : Person)

post: enpl oyees = enpl oyees@r e->i ncl udi ng(p) and

14 Object Constraint Language Specification, v 1.1

stockprice() = stockprice@re() + 10

The above operation can also be specified by a post and pre condition together
Conpany: : hi reEnpl oyee(p : Person)

pre : not enpl oyee->i ncl udes(p)
post: enpl oyees->i ncl udes(p) and
stockprice() = stockprice@re() + 10
When the pre-value of a property is takes and this evaluates to an object, all further properties
that are accessed of this object are the new values (upon completion of the operation) of this

object. So:
a.b@re.c -- takes the old value of property b of a, say x
-- and then the new val ue of ¢ of x.
a.b@re.cpre -- takes the old value of property b of a, say x

-- and then the old value of ¢ of x.

The ‘@pre’ postfix is only allowed in OCL expressions that are part of a Postcondition. Asking
for a current property of an object that has been destroyed during execution of the operation
results in Undefined. Also, referring to the previous value of an object that has been created
during execution of the operation results in Undefined.

6. COLLECTION OPERATIONS

OCL defines many operations on the collection types. These operations are specifically meant to
enable a flexible and powerful way of projecting new collections from existing ones. The
different constructs are described in the following sections.

6.1 SELECT AND REJECT OPERATIONS

Sometimes an expression using operations and navigations delivers a collection, while we are
interested only in a special subset of the collection. OCL has special constructs to specify a
selection from a specific collection. These aresghect andreject operations. The select

specifies a subset of a collection. A select is an operation on a collection and is specified using
the arrow-syntax:

collection->select(...)
The parameter of select has a special syntax that enables one to specify which elements of the
collection we want to select. There are three different forms, of which the simplest one is:

col l ecti on->sel ect(bool ean- expressi on)
This results in a collection that contains all the elements dadlection for which theboolean-
expression evaluates to true. To find the result of this expression, for each elenoelieation
the expressiohoolean-expression is evaluated. If this evaluates to true, the element is included

in the result collection, otherwise not. As an example, the next OCL expression specifies all the
employees older than 50 years:

Conpany
sel f. empl oyee- >sel ect (age > 50)

Thesdf.employee is of type Set(Person). Tiselect takes each person frosaf.employee and
evaluatesge > 50 for this person. If this results tnue, than the person is in the result Set.

Object Constraint Language Specification, v 1.1 15

As shown in the previous example, the context for the expression in the select argument is the
element of the collection on which the select isinvoked. Thus the age property istaken in the
context of a person.

In the above example, it isimpossible to refer explicitly to the persons themselves; you can only
refer to properties of them. To enable to refer to the persons themselves there is a more general
syntax for the select expression:

Col | ection->select(v | bool ean-expression-with-v)
Thevariable v is called the iterator. When the select is evaluated, v iterates over the collection
and the boolean-expression-with-v is evaluated for each v. The v is areference to the object from

the collection and can be used to refer to the objects themselves from the collection. The two
examples below are identical:

Conmpany
sel f. enpl oyee- >sel ect (age > 50)

Conmpany
sel f. enmpl oyee->sel ect(p | p.age > 50)

The result of the complete select is the collection of persons p for which the p.age > 50 evaluates
to True. This amounts to a subset of self.employee.

Asafinal extension to the select syntax the expected type of the variable v can be given. The
select now iswritten as:

Col l ection->select(v : Type | bool ean-expression-w th-v)

The meaning of thisisthat the objectsin collection must be of type Type. The next exampleis
identical to the previous examples:

Conmpany
sel f. enmpl oyee. sel ect(p : Person | p.age > 50)
The compete select syntax now looks like one of:

collection->select(v : Type | bool ean-expression-with-v)
col l ection->select(v | bool ean-expression-with-v)
col | ection->sel ect (bool ean-expression)

The Reject operation isidentical to the select operation, but with reject we get the subset of all
the elements of the collection for which the expression evaluates to False. The rgject syntax is
identical to the select syntax:

Col l ection->reject(v : Type | bool ean-expression-w th-v)
Col l ection->reject(v | bool ean-expression-with-v)
Col | ecti on->reject(bool ean-expression)

As an example, specify all the employees who are not married:

Conmpany
sel f.enmpl oyee->reject(isMarried)

Thereject operation is available in OCL for convenience, because each reject can be restated as a
select with the negated expression. Therefore the following two expressions are identical:

Col l ection->reject(v : Type | bool ean-expression-w th-v)
collection->select(v : Type | not (bool ean-expression-with-v))

Object Constraint Language Specification, v 1.1

6.2 CoLLECT OPERATION

As shown in the previous section, the select and reject operation always result in a sub-collection
of the ariginal collection. When we want to specify a collection which is derived from some
other collection, but which contains different objects from the original collection (i.e. it isnot a
sub-collection), we can use a collect operation. The collect operation uses the same syntax as the
select and reject and is written as one of':

collection->collect(v : Type | expression-with-v)

col l ection->collect(v | expression-with-v)
col | ection->col | ect(expression)

The value of the reject operation is the collection of the results of all the evaluations of
expression-with-v.

An example: specify the collection of birthDates for all employees in the context of a company.
This can be written as one of:

Conmpany
sel f. enpl oyee->col l ect(birthDate)
sel f. enpl oyee->col | ect (person | person.birthDate)
sel f. enpl oyee->col ect (person : Person | person.birthDate)

An important issue here is that the resulting collection is not a Set, but a Bag. When more than
one employee has the same value for birthDate, this value will be an element of the resulting Bag
more than once. The Bag resulting from the collect operation always has the same size as the
original collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag. The following
expression results in the Set of different birthDates from all employees of a Company:

Conmpany
sel f. enpl oyee->col | ect (birthDate)->asSet

6.2.1 Shorthand for Collect

Because navigation through many objectsis very common, there is a shorthand notation for the
collect that makes the OCL expressions more readable. Instead of

sel f. enpl oyee->col | ect (bi rt hdat e)
we can also write:

sel f. enpl oyee. bi rt hdat e

In general, when we apply a property to a Collection of Objects, then it will automatically be
interpreted as a collect over the members of the Collection with the specified property.

Therefore, for any propertyname that is defined as a property on the objectsin a collection, the
following two expressions are identical:

col |l ection. propertynane
col |l ection->col | ect (propertynane)

and so are those if the property is parameterized.

collection.propertyname(parl, par2, ...)
collection->collect(propertyname(parl, par2, ...)

Object Constraint Language Specification, v 1.1 17

6.3 FORALL OPERATION

Many times a constraint is needed on all elements of a collection. The forAll operation in OCL
allows specifying a Boolean expression, which must hold for all objects in a collection:
collection->forAll (v : Type | bool ean-expression-with-v)

col lection->forAll (v | bool ean-expression-with-v)
col l ection->forAl | (bool ean-expression)

ThisforAll expression resultsin a Boolean. Theresult istrue if the boolean-expression-with-vis
true for all elements of collection. If the boolean-expression-with-v is false for one or morevin
collection, then the complete expression evaluates to false. For example, in the context of a

company:
Conmpany
sel f.empl oyee->forAll (forename = 'Jack’)
sel f.empl oyee->forAll (p | p.forename = 'Jack’)
sel f.empl oyee->forAl I (Person p | p.forename = 'Jack’)

These expressions evaluate to true if the forename feature of each employee equals to ‘Jack’.

The forAll operation has an extended variant in which more then one iterator is used. Both
iterators will iterate over the complete collection. Effectively this is a forAll on the Cartesian
product of the collection with itself.
Conmpany
sel f.empl oyee->forAll (el, e2
el <> e2 inplies el.forenane <> e2.forenane)

sel f.empl oyee->for Al l (Person el, e2
el <> e2 inplies el.forenane <> e2.forenane)

This expression evaluates to true if the forenames of all employees are different.

It is semantically equivalent to:

Conmpany
sel f.empl oyee->forAll (el | self.enployee->forAl (e2
el <> e2 inplies el.forenane <> e2.forenane)))

6.4 EXISTS OPERATION

Many times one needs to know whether there is at least one element in a collection for which a
constraint holds. The exists operation in OCL allows to specify a boolean expression which must
hold for at least one object in a collection:

col l ection->exists(v : Type | bool ean-expression-with-v)

col | ection->exists(v | bool ean-expression-with-v)
col | ection->exi sts(bool ean-expression)

This forAll operation results in a Boolean. The result is true ibtiabean-expression-with-v is
true for at least one elementanllection. If the boolean-expression-with-v is false for allv in
collection, then the complete expression evaluates to false. For example, in the context of a

company:
Conmpany
sel f. enpl oyee- >exi sts(forename = 'Jack’)
sel f.enmpl oyee->exists(p | p.forename = 'Jack’)
sel f.enpl oyee->exists(p : Person | p.forename = 'Jack’)

These expressions evaluate to true if the forename feature of at least one employee equals to
‘Jack’.

18 Object Constraint Language Specification, v 1.1

6.5 ITERATE OPERATION

The iterate operation is slightly more complicated, but is a very generic. The operationsreject,
select, forAll, exists, collect, elect can all be described n terms of iterate.

An accumulation build one value by iterating over a collection.
collection->iterate(elem: Type; acc : Type = <expression> |
expression-with-el emand-acc)
The variable e emistheiterator, asin the definition of select, forAll, etc. The variable acc is the
accumulator. The accumulator gets an initial value <expression>.

When the iterate is evaluated, elemiterates over the collection and the expression-with-elem-and-
acc is evaluated for each elem. After each evaluation of expression-with-elem-and-acc, its value
is assigned to acc. In thisway the value of acc is build up during the iteration of the collection.
The collect operation described in terms of iterate will look like:
collection->collect(x : T | x.property)
-- is identical to:

collection->iterate(x : T; acc : T2 = Bag{} |
acc->i ncl udi ng(x. property))

Or written in Javarlike pseudocode the result of the iterate can be calculated as:
iterate(elem: T, acc : T2 = val ue)
acc = val ue;
for(Enunmeration e = collection.elenments() ; e.hasMreEl ements();){

el em = e. next El enent () ;
acc = <expression-with-el emand-acc>

/. PREDEFINED OCL TYPES

This section contains all standard types defined within OCL, including all the features defined on

those types. Its signature and a description of its semantics define each feature. Within the

description the name ‘result’ is used to refer to the value that results from evaluating the feature.
In several places post conditions are used to describe properties of the result. When there is more
than one postcondition, all postconditions must be true.

7.1 BASIC TYPES

The basic types used are Integer, Real, String and Boolean. They are supplemented with
OclExpression, OclType and OclAny.

7.1.1 OclType

All types defined in an UML model, or pre-defined within OCL have a type. This type is an
instance of the OCL type called OclType. Access to this type allows the modeler access to the
meta-level of the model. This can be useful for advanced modelers.

Object Constraint Language Specification, v 1.1 19

Features of OclType, theinstance of OclTypeis called type.

type.nanme : String
The name of type.

type.attributes : Set(String)
The set of names of the attributes of type, asthey are defined in the model.

type. associ ati onEnds : Set (String)

The set of names of the navigable associationEnds of type, asthey are defined in the
model.

type. operations : Set(String)
The set of names of the operations of type, as they are defined in the model.

type. supertypes : Set(Ccl Type)

The set of all direct supertypes of type.
post: type.al | Supertypes->i ncl udesAl | (result)

type. al | Supertypes : Set(Ccl Type)
The transitive closure of the set of all supertypes of type.

type. alllnstances : Set(type)
The set of al instances of type and all its subtypes.

7.1.2 OclAny

Within the OCL context, the type OclAny is the supertype of all typesin the model. Features on
OclAny are available on each object in all OCL expressions.

All classesin aUML model inherit all features defined on OclAny. To avoid name conflicts

between features in the model and the features inherited from OclAny all names on the features

of OclAny start with ‘ocl’. Although theoretically there may still be name conflicts, they can be
avoided. One can also use the pathname construct to explicitly refer to the OclAny properties.

Features of OclAny, the instance of OclAny is calbepbct.

object = (object2 : Ccl Any) : Bool ean
True if object is the same object abject2.

object <> (object2 : Ccl Any) : Bool ean

True if object is a different object asbject2.
post: result = not (object = object?2)

obj ect. ocl Type : Ccl Type
The type of thebject

obj ect. ocl I skindOf (type : COcl Type) : Bool ean
True iftypeis a supertype (transitive) of the typeobjfect.

20 Object Constraint Language Specification, v 1.1

post: result = type.all Super Types->i ncl udes(obj ect . ocl Type) or
type = object->ocl Type

obj ect.ocl I sTypeO (type : Ol Type) : Bool ean

Trueif typeisegual to the type of object.
post: result = (object.ocl Type = type)

obj ect. ocl AsType(type : Ccl Type) : type

Resultsin object, but of known type type.

Resultsin Undefined if the actual type of object is not type or one of its subtypes
pre . object.ocllsKindO(type)

post: result = object

post: result.ocl|sKindX(type)

7.1.3 OclExpression

Each OCL expression itself is an object in the context of OCL. The type of the expression is
OclExpression. Thistype and its features are used to define the semantics of features that take an
expression as one of their parameters: select, collect, forAll, etc.

An OclExpression includes the optional iterator variable and type and the optional accumulator
variable and type.

Features of OclExpression, the instance of OclExpression is called expression.

expressi on. eval uati onType : Ccl Type
The type of the object that results from evaluating expression.

7.1.4 Real

The OCL type Real represents the mathematical concept of real. Note that Integer is a subclass of
Real, so for each parameter of type Real, on can use an integer as the actual parameter.

Features of Real, the instance of Real iscalledr.

_‘
1

(r2 : Real) : Bool ean
Trueif risequal tor2.

r + (rl: Real) : Rea
The value of the addition of r and r1.

r- (rl: Real) : Rea
The value of the subtraction of r1 fromr..

r * (rl: Real) : Rea
The value of the multiplication of r and r1.

r/ (rl: Real) : Rea
The value of r divided by r1.

Object Constraint Language Specification, v 1.1 21

r.abs : Real

The absolute value of r
post: if r <0 then result = -

r else result =r endif

r.fl oor I nt eger

The largest integer which islessthan or equal tor.
post: (result <=r) and (result + 1 > r)

r.max(r2 : Real) Real

The maximumof r anr2.

post: if r >=r2 then result =r else result =r2 endif

r.mn(r2 : Real) Real

The minimumof r anr2.

post: if r <=r2 then result =r else result =r2 endif

r < (r2: Real)
Trueif rlislessthanr2.

Bool ean

r > (r2: Real) Bool ean

Trueif rlisgreater thanr2.
post: result = not (r <= r2)

r <= (r2 : Real) Bool ean

Trueif rlislessthan or equal to r2.

post: result = (r =7r12) or (r <r2)

r >=(r2 : Real) Bool ean

Trueif rlisgreater than or equal tor2.

post: result = (r =7r12) or (r >r2)

7.1.5 Integer
The OCL type Integer represents the mathematical concept of integer.

22

Features of Integer, the instance of Integer iscalled i.

(i2 : Integer) Bool ean

Trueif i isequal toi2.

i + (i2: Integer) I nt eger
The value of the addition of i and i2.
i + (rl1: Real) Rea

The value of the addition of i and r1.

i - (i2: Integer)

The value of the subtraction of i2 fromi.

| nt eger

Object Constraint Language Specification, v 1.1

i - (rl: Real) : Rea
The value of the subtraction of r1 fromi..

i * (i2: Integer) : Integer
The value of the multiplication of i and i2.

i * (rl: Real) : Rea
The value of the multiplication of i and r1.

i/ (i2: Integer) : Real
Thevaueof i divided by i2.

i / (rl: Real) : Rea
Thevalueof i divided by r1.

i.abs : Integer

The absolute value of i

post: if i <0 then result = - i else result =i endif
i.div(i2 : Integer) : Integer

The number of timesthat i2 fits completely withini.
post: result * i2 <=
post: result * (i2 + 1) > i

i.mod(i2 : Integer) : Integer

Theresultisi moduloi2.

post: result =i - (i.div(i2) * i2)
i.max(i2 : Integer) : Integer

The maximum of i ani2.

post: if i >=i2 then result =i else result =i2 endif
i.mn(i2: Integer) : Integer

The minimum of i ani2.

post: if i <=i2 then result =i else result =i2 endif

7.1.6 String

The OCL type String represents ASCII strings.

Features of String, the instance of String is called string.

string = (string2 : String) : Bool ean
Trueif string and string2 contain the same characters, in the same order.

string.size : Integer
The number of charactersin string.

string.concat(string2 : String) : String

Object Constraint Language Specification, v 1.1 23

The concatenation of string and string2.

post: result.size = string.size + string2.size

post: result.substring(l, string.size) = string

post: result.substring(string.size + 1, string2.size) = string2

string.toUpper : String

The value of string with all lowercase characters converted to uppercase characters.
post: result.size = string.size

string.toLower : String

The value of string with all uppercase characters converted to lowercase characters.
post: result.size = string.size

string.substring(lower : Integer, upper : Integer) : String
The sub-string of string starting at character number lower, up to and including character
number upper.
7.1.7 Boolean

24

The OCL type Boolean represents the common true/false values.

Features of Boolean, the instance of Boolean is called b.

b = (b2 : Bool ean) : Bool ean
Equal if b isthe same as b2.

b or (b2 : Boolean) : Bool ean
Trueif either b or b2 istrue.

b xor (b2 : Bool ean) : Bool ean

Trueif either b or b2 is true, but not both.
post: (b or b2) and not (b = b2)

b and (b2 : Bool ean) : Bool ean
Trueif both bl and b2 are true.

not b : Bool ean
Trueif bisfase

post: if b then result = false else result = true endif

b inplies (b2 : Bool ean) : Bool ean

Trueif bisfalse, orif bistrueand b2 istrue.
post: (not b) or (b and b2)

if b then (expressionl : Ccl Expression)

el se (expression2 : Ccl Expression) endif : expressionl. eval uati onType

If bistruethe result isthe value of evaluating expressionl otherwise result is the value
of evaluating expression2.

Object Constraint Language Specification, v 1.1

7.1.8 Enumeration
The OCL type Enumeration represents the enumerations defined in an UML model.

Features of Enumeration, the instance of Enumeration is called enumeration.

enuneration = (enuneration2 : Bool ean) : Bool ean
Equal if enumeration is the same as enumeration2.

enuneration <> (enuneration2 : Bool ean) : Bool ean

Equal if enumeration is not the same as enumeration2.
post: result = not (enuneration = enuneration2)

7.2 COLLECTION-RELATED TYPES

The following sections define the features on collections. |.e. these features are avail able on Set,

Bag and Sequence. As defined in this section, each collection typeis actually a template with one
parameter. ‘T’ denotes the parameter. A real collection type is created by substituting a type for
the T. So Set (Integer) and Bag (Person) are collection types.

7.2.1 Collection

Collection is the abstract supertype of all collection types in OCL. Each occurrence of an object
in a collection is called an element. If an object occurs twice in a collection, there are two
elements. In this section the operations on Collections are defined that have identical semantics
for all collection subtypes. Some operations may be defined with the subtype as well, which
means that there is an additional postcondition or a more specialized return value.

The definition of several common operations is different for each subtype. These operations are
not mentioned in this section.

Features of Collection, the instance of Collection is caitdlection.

coll ection->size : Integer
The number of elements in the collectmohlection
post: result = collection->iterate(elem acc : Integer = 0 | acc + 1)

col | ection->includes(object : Ccl Any) : Bool ean

True if object is an element afollection, false otherwise.
post: result = (collection->count(object) > 0)

col I ecti on->count (object : Ccl Any) : Integer
The number of times thabject occurs in the collectiooollection
post: result = collection->iterate(elem acc : Integer = 0 |

if elem= object then acc + 1 el se acc endif)

coll ection->includesAll(c2 : Collection(T)) : Bool ean

Doescollection contain all the elements o2 ?
post: result = c2->forAll (elem| collection->includes(elen)

Object Constraint Language Specification, v 1.1 25

col l ection->i sEnpty : Bool ean

Is collection the empty collection?
post: result = (collection->size =0)

col | ection->not Enpty : Bool ean

Is collection not the empty collection?
post: result = (collection->size <> 0)

collection->sum: T

The addition of all elementsin collection. Elements must be of a type supporting
addition (Integer and Real)

post: result = collection->iterate(elem acc : T =0 |
acc + elem)

col | ection->exi sts(expr : Ccl Expression) : Bool ean

Resultsin true if expr evaluatesto true for at least one element in collection.

post: result = collection->iterate(elem acc : Bool ean = fal se |
acc or expr)

collection->forAll (expr : Ccl Expression) : Bool ean

Resultsin trueif expr evaluates to true for each element in collection.
Otherwise result in false.

post: result = collection->iterate(elem acc : Boolean = true |
acc and expr)

collection->iterate(expr : Ccl Expression) : expr.evaluationType

Iterates over the collection. See section 6.5 for a complete description. Thisisthe basic
collection operation with which the other collection operations can be described.

7.2.2 Set
The Set isthe mathematical set. It contains elements without duplicates.

Features of Set, the instance of Set is called set.

set->union(set2 : Set(T)) : Set(T)

The union of set and set2

post: T.alllnstances->forAll (el em |
resul t->i ncludes(elen =
set->i ncludes(el em) or set2->includes(elen))

set->union(bag : Bag(T)) : Bag(T)

The union of set and bag.
post: T.alllnstances->forAll (elem |
resul t->count(elem =
set->count (el en) + bag->count (el en))

set = (set2 : Set) : Bool ean

Evauates to true if set and set2 contain the same el ements.

post: result = T.alllnstances->forAll (el em |
set->i ncludes(el en) = set2->includes(elen))

26 Object Constraint Language Specification, v 1.1

set->intersection(set2 : Set(T)) : Set(T)

The intersection of set and set2. |.e. the set of all elements that are in both set and set2.
post: T.alllnstances->forAl (el em|
resul t->i ncludes(elem =
set->i ncl udes(el em) and set 2->i ncl udes(el em)

set->intersection(bag : Bag(T)) : Set(T)

The intersection of set and bag
post: result = set->intersection(bag->asSet)

set — (set2 : Set(T)) : Set(T)

The elements of set, which are not in set2
post: T.alllnstances->forAl (el em|
resul t->i ncludes(elem =

set->i ncl udes(el en) and not set2->incl udes(el enm)

set->including(object : T) : Set(T)

The set containing all elements of set plus object
post: T.alllnstances->forAl (el em|
resul t->includes(elen) =
set->i ncl udes(elen) or (elem = object))

set->excluding(object : T) : Set(T)

The set containing all elements of set without object
post: T.alllnstances->forAl (el em|
resul t->i ncludes(elem =
set->i ncl udes(el em) and not (el em = obj ect))

set->symmetricDifference(set2 : Set(T)) : Set(T)

The sets containing all the elements that are in set or in set2, but not in both
post: T.alllnstances->forAl (el em|
resul t->i ncludes(elem =
set->i ncl udes(el em) xor set2->includes(elen))

set->select(expr : OclExpression) : Set(expr.type)

The subset of set for which expr istrue

post: result = set->iterate(elem acc : Set(T) = Set{} |
i f expr then acc->including(elen) else acc endif)

set->reject(expr : OclExpression) : Set(expr.type)

The subset of set for which expr isfalse
post: result = set->select(not expr)

set->collect(expression : OclExpression) : Bag(expression.oclType)

The Bag of elements which results from applying expr to every member of set

post: result = set->iterate(elem acc : Bag(T) = Bag{} |
acc->i ncl udi ng(expr))

set->count(object : T) : Integer

The number of occurrences of abject in set
post: result <=1

set->asSequence : Sequence(T)

Object Constraint Language Specification, v 1.1

27

A Sequence that contains all the elements from set, in random order.

post: T.alllnstances->forAll (el em |
resul t->count (el em) = set->count(elem)

set->asBag : Bag(T)

The Bag that contains all the elements from set.

post: T.alllnstances->forAll (el em |
resul t->count (el em) = set->count(elem)

7.2.3 Bag

A bag is acollection with duplicates allowed. That is, one object can be an element of a bag
many times. There is no ordering defined on the elements in a bag.

Features of Bag, the instance of Bag is called bag.

bag = (bag2 : Bag) : Bool ean

Trueif bag and bag2 contain the same elements, the same number of times.

post: result = T.alllnstances->forAll (el em |
bag- >count (el en) = bag2->count (el en))

bag- >uni on(bag2 : Bag) : Bag(T)
The union of bag and bag2

post: T.alllnstances->forAll (elem |
resul t->count(elem =
bag- >count (el en) + bag2->count (el en))

bag->union(set : Set) : Bag(T)

The union of bag and set
post: T.alllnstances->forAll (elem |
resul t->count(elem =
bag- >count (el en) + set->count (el em)

bag->i ntersection(bag2 : Bag) : Bag(T)

The intersection of bag and bag2
post: T.alllnstances->forAll (elem |
resul t->count(elem =
bag- >count (el en) . m n(bag2->count (el en)))

bag->i ntersection(set : Set) : Set(T)

The intersection of bag and set
post: T.alllnstances->forAll (el em |
resul t->count(elem =
bag->count (el en) . mi n(set->count(elen)))

bag->i ncl udi ng(object : T) : Bag(T)

The bag containing all elements of bag plus object

post: T.alllnstances->forAll (el em |
if elem = object then
resul t->count (el em) = bag->count(elem + 1
el se
resul t->count (el em) = bag->count (el em
endi f)

28 Object Constraint Language Specification, v 1.1

bag- >excl udi ng(object : T) : Bag(T)

The bag containing al elements of bag apart from all occurrences of object
post: T.alllnstances->forAl (el em|
if elem= object then
result->count(elen) =0
el se
resul t->count (el em
endi f)

bag- >count (el em

bag- >sel ect (expression : Ccl Expression) : Bag(T)

The sub-bag of bag for which expressionistrue

post: result = bag->iterate(elem acc : Bag(T) = Bag{} |
i f expr then acc->including(elen) else acc endif)

bag->rej ect (expression : Ccl Expression) : Bag(T)

The sub-bag of bag for which expression isfalse
post: result = bag->sel ect(not expr)

bag- >col | ect (expression: COcl Expression) : Bag(expression.ocl Type)

The Bag of elements which results from applying expression to every member of bag

post: result = bag->iterate(elem acc : Bag(T) = Bag{} |
acc->i ncl udi ng(expr))

bag- >count (object : T) : Integer
The number of occurrences of abject in bag

bag- >asSequence : Sequence(T)

A Sequence that contains all the elements from bag, in random order.

post: T.alllnstances->forAll (el em |
bag->count (el en) = result->count(elem)

bag->asSet : Set(T)

The Set containing all the el ements from bag, with duplicates removed.

post: T.alllnstances(el em |
bag- >i ncl udes(el em) = result->includes(el em)

7.2.4 Sequence

A sequenceis a collection where the elements are ordered. An element may be part of a sequence
more than once.

Features of Sequence(T), the instance of Sequence is called sequence.

sequence->count (object : T) : Integer
The number of occurrences of object in sequence

sequence = (sequence2 : Sequence(T)) : Bool ean

Trueif sequence contains the same elements as sequence? in the same order.

post: result = Sequence{1l..sequence->size}->forAl(index : Integer |
sequence->at (i ndex) = sequence2->at (i ndex))

Object Constraint Language Specification, v 1.1 29

and
sequence- >si ze = sequence2->si ze

sequence- >uni on (sequence2 : Sequence(T)) : Sequence(T)
The sequence consisting of all elementsin sequence, followed by all elementsin

sequence?

post: result->size = sequence->si ze + sequence2- >size

post: Sequence{l..sequence->size}->forAl (index : Integer
sequence->at (i ndex) = result->at(index))

post: Sequence{l..sequence2->size}->forAl (index : |nteger

sequence2->at (i ndex) =
resul t->at (i ndex + sequence->size)))

sequence- >append (object: T) : Sequence(T)
The sequence of elements, consisting of all elements of sequence, followed by object.
post: result->size = sequence->size + 1
post: result->at(result->size) = object

post : Sequence{1l..sequence->si ze}->forAll (index : Integer
resul t->at (i ndex) = sequence ->at (i ndex))

sequence- >prepend(object : T) : Sequence(T)
The sequence consisting of all elementsin sequence, followed by object
post: result->size = sequence->size + 1
post: result->at(1l) = object

post : Sequence{1l..sequence->si ze}->forAll (index : Integer
sequence- >at (i ndex) = result->at(index + 1))

sequence- >subSequence(l ower : Integer, upper : Integer) : Sequence(T)
The sub-sequence of sequence starting at number lower, up to and including element
number upper.

post: if sequence->size < upper then
result = Undefined

el se
resul t->size = upper - lower + 1 and
Sequence{l ower .. upper}->forAl (index
result->at(index - lower + 1) =
sequence->at (| ower + index - 1))
endi f
sequence->at (i : Integer) : T
Thei-th element of sequence.
post: i <= 0 or sequence->size < i inplies result = Undefined

sequence->first : T

The first element in sequence
post: result = sequence->at(1)

sequence->last : T

The last element in sequence
post: result = sequence->at(sequence->si ze)

sequence->i ncl udi ng(object : T) : Sequence(T)
The sequence containing all elements of sequence plus object added as the last element
post: result = sequence. append(obj ect)

30 Object Constraint Language Specification, v 1.1

sequence- >excl udi ng(object : T) : Sequence(T)

The sequence containing all elements of sequence apart from all occurrences of object.
The order of the remaining elementsis not changed.

post: result->includes(object) = fal se

post: result->size = sequence->size - sequence->count (obj ect)

post: result = sequence->iterate(elem acc : Sequence(T) = Sequence{}|
if elem= object then acc el se acc->append(elen) endif)

sequence- >sel ect (expression : Ccl Expression) : Sequence(T)

The subsequence of sequence for which expression istrue

post: result = sequence->iterate(elem acc : Sequence(T) = Sequence{}
i f expr then acc->including(elen) else acc endif)

sequence- >rej ect (expression : Ccl Expression) : Sequence(T)

The subsequence of sequence for which expressionisfalse
post: result = sequence->sel ect(not expr)

sequence->col | ect (expression : COcl Expressi on)

Sequence(expressi on. ocl Type)

The Sequence of elements which results from applying expression to every member of
sequence

sequence->i terate(expr : Ccl Expression) : expr.eval uationType

Iterates over the sequence. Iteration will be done from element at position 1 up until the
element at the last position following the order of the sequence.

sequence- >asBag() : Bag(T)

The Bag containing all the elements from sequence, including duplicates

post: T.alllnstances->forAll (el em |
resul t->count (el em) = sequence->count (el em)

sequence->asSet () : Set(T)

The Set containing all the elements from sequence, with duplicated removed

post: T.alllnstances->forAll (el em |
resul t->i ncludes(el em) = sequence->i ncl udes(el em)

8. GRAMMAR FOR OCL

This section describes the grammar for OCL expressions. An executable LL(1) version of this
grammar is available on the OCL web site mentioned at the start of this document.

The grammar description uses the EBNF syntax, where "[" means a choice, "?" optionality and
"*" means zero or more times. In the description of the name, typeName and string the syntax for
lexical tokens from the JavaCC parser generator is used. See http://www.suntest.com/JavaCC.

expressi on
i f Expression

| ogi cal Expression
"if" expression

"t hen" expression

"el se" expression
"endi f"

| ogi cal Expressi on := rel ati onal Expression

Object Constraint Language Specification, v 1.1 31

32

rel ati onal Expressi on

addi ti veExpressi on

mul tiplicativeExpression

unar yExpr essi on

post fi XExpr essi on
pri mar yExpr essi on

featureCal | Paraneters
literal
enuner ati onType

si npl eTypeSpeci fi er

literal Collection
expressi onLi st Or Range

featureCall

qualifiers
decl ar at or

pat hTypeNane
pat hNane

ti meExpr essi on

act ual Par anet er Li st
| ogi cal Oper at or

col |l ectionKind

rel ati onal Qper at or
addQper at or

mul ti pl yOper at or
unar yQper at or

typeNane
name
numnber
string

(logical Operator rel ati onal Expression)*
addi ti veExpressi on

(relational Operator additiveExpression)?
mul tiplicativeExpression

(addQperator nultiplicativeExpression)*
unar yExpr essi on

(mul tiplyOperator unaryExpression)*

(unaryQperator postfixExpression)

| postfixExpression

pri maryExpression (("." | "->") featureCall)*
iteral Collection

|
| literal
| pat hName tinmeExpression? qualifier?
f eatureCal | Paraneters?
| "(" expression ")"
| i1fExpression
"(" (declarator)? (actual ParaneterList)? ")"
<STRING> | <nunber> | "#" <name>
"enunmd "{" "#" <name> ("," "#" <name>)* "}"
pat hTypeNanme
| enumerationType
collectionKind "{" expressionListO Range? "}"
expressi on
(("," expression)+
| (".." expression)
)?
pat hNane ti meExpression? qualifiers?
feat ureCal | Paranet ers?
"[" actual ParaneterList "]"

<nane> ("," <nane>)*
(":" sinpleTypeSpecifier)? "|"
<typeName> ("::" <typeNane>)*
(<typeNanme> | <name>)
("::" (<typeName> | <nanme>))*
"@ <nane>
expression ("," expression)*
"and" | "or" | "xor"™ | "inplies"
"Set" | "Bag" | "Sequence" | "Collection"
B I R S - B L B
mym | oo
maw | g
"-"] "not"
"A-tZ' ("a"-"z" | "0"-"9" | "A'-"Z" | "_")*
"a"-"z" ("a"-"z" | "0"-"9" | "A'-"Z" | "_")*
"o"-"9" ("O"-"9")*
N O o I R A N L N A
| (e
(["n", ", "k, e A]
| [70m-"7"] ([707-"7"])2
| [m0"-"3"] ["0"-"7"] ["0"-"7"]

Object Constraint Language Specification, v 1.1

