Differentiated Services on Linux

Werner Almesberger Werner.Almesberger@epfl.ch, EPFL ICA
Jamal Hadi Salim hadi@nortelnetworks.com, CTL Nortel Networks
Alexey Kuznetsov kuznet@ms?2.inr.ac.ru, INR Moscow

June 25, 1999

Abstract

Recent Linux kernels offer a wide variety of traffic control
functions, which can be combined in a modular way. We
have designed support for Differentiated Services based on
the existing traffic control elements, and we have imple-
mented new components where necessary. In this document
we give a brief overview of the structure of Linux traffic con-
trol, and we describe our prototype implementation in more
detail.

1 Introduction

The Differentiated Services architecture (Diffserv) lays the
foundation for implementing service differentiation in the
Internet in an efficient, scalable way. We assume that read-
ers are familiar with the concepts and terminology defined
in [1]. Furthermore, we assume familiarity with the packet
marking as described in [2].

We have developed a design to support basic classifica-
tion and DS field manipulation required by Diffserv nodes.
The design enables configuration of the first PHBs that are
being defined in the Diffserv WG. We have implemented a
prototype of this design using the traffic control framework
available in recent Linux kernels. The source code, config-
uration examples, and related information can be obtained
from http://icawwwl.epfl.ch/linux-diffserv/

The main focus of our work is to allow maximum flexibil-
ity for node configuration and for experiments with PHBs,
while still maintaining a design that does not unnecessarily
sacrifice performance.

This document is structured as follows. Section 2 gives a
brief overview of traffic control functions in recent Linux
kernels. Section 3 discusses where the existing model
needed to be extended. Section 4 describes the new com-
ponents in more detail. We conclude with examples of con-
figuration scripts in section 5.

2 Linux Traffic Control

Figure 1 shows roughly how the kernel processes data re-
ceived from the network, and how it generates new data to

be sent on the network.

Traffic
Upper layers (TCP, UDP, ...) | control
' |
Input de- For- Output
—| multi- wardin veuing |
plexing g ! g

Figure 1: Processing of network data.

“Forwarding” includes the selection of the output inter-
face, the selection of the next hop, encapsulation, etc. Once
all this is done, packets are queued on the respective out-
put interface. This is the point where traffic control comes
into play. Traffic control can, among other things, decide
if packets are queued or if they are dropped (e.g. if the
queue has reached some length limit, or if the traffic ex-
ceeds some rate limit), it can decide in which order packets
are sent (e.g. to give priority to certain flows), it can delay
the sending of packets (e.g. to limit the rate of outbound
traffic), etc.

Once traffic control has released a packet for sending, the
device driver picks it up and emits it on the network.

2.1 Components

The traffic control code in the Linux kernel consists of the
following major conceptual components:

e queuing disciplines

e classes (within a queuing discipline)
o filters

e policing

Each network device has a queuing discipline associated
with it, which controls how packets enqueued on that de-
vice are treated. A very simple queuing discipline may just
consist of a single queue, where all packets are stored in
the order in which they have been enqueued, and which is
emptied as fast as the respective device can send. See fig-
ure 2 for such a queuing discipline without externally visible
internal structure.

—1 Queuing discipline

Figure 2: A simple queuing discipline without classes.

More elaborate queuing disciplines may use filters to dis-
tinguish among different classes of packets and process each
class in a specific way, e.g. by giving one class priority over
other classes.

Figure 3 shows an example of such a queuing discipline.
Note that multiple filters may map to the same class.

Queuing disciplines and classes are intimately tied to-
gether: the presence of classes and their semantics are fun-
damental properties of the queuing discipline. In contrast
to that, filters can be combined arbitrarily with queuing
disciplines and classes as long as the queuing discipline has
classes to map the packets to. But flexibility does not end
there yet — classes normally do not take care of storing their
packets themselves, but they use another queuing discipline
to take care of that. That queuing discipline can be arbi-
trarily chosen from the set of available queuing disciplines,
and it may well have classes, which in turn use queuing dis-
ciplines, etc. The term qdisc would be used interchangeably
to mean queueing discipline in this draft.

Figure 4 shows an example of such a stack: first, there is a
queuing discipline with two delay priorities. Packets which
are selected by the filter go to the high-priority class, while
all other packets go to the low-priority class. Whenever
there are packets in the high-priority queue, they are sent
before packets in the low-priority queue (e.g. the sch_prio
queuing discipline works this way). In order to prevent
high-priority traffic from starving low-priority traffic, we
use a token bucket filter (TBF), which enforces a rate of at
most 1 Mbps. Finally, the queuing of low-priority packets
is done by a FIFO queuing discipline. Note that there are
other ways to accomplish what we have done here, e.g. by
using class-based queuing (CBQ).

Packets are enqueued as follows: when the enqueue func-
tion of a queuing discipline is called, it scans the filters until
one of them indicates a match to a class identifier. It then
queues the packet for the corresponding class, which usually
means to invoke the enqueue function of the queuing disci-
pline “owned” by that class. Packets which do not match
any of the filters are typically attributed to some default
class.

Typically, each class “owns” one queue, but it is in prin-
ciple also possible that several classes share the same queue
or even that a single queue is used by all classes of the re-
spective queuing discipline. Note, however, that packets do
not carry any explicit indication of which class they were
attributed to. Queuing disciplines that change per-class in-
formation when dequeuing packets (e.g. CBQ) will there-
fore not work properly if the “inner” queues are shared,
unless they are able either to repeat the classification or to

pass the classification result from enqueue to dequeue by
some other means.

Usually when enqueuing packets, the corresponding
flow(s) can be policed, e.g. by discarding packets which
exceed a certain rate.

3 Diffserv extensions to Linux traf-
fic control

The traffic control framework available in recent Linux ker-
nels [3] already offers most of the functionality required for
implementing Diffserv support. We therefore closely fol-
lowed the existing design and added new components only
where it was deemed strictly necessary.

3.1 Overview

Figure 5 shows the general structure of the forwarding path
in a Diffserv node.

| St g 1| ke |~
ier arkin
Meter - PHB =

Figure 5: General Diffserv forwarding path.

Depending on the implementation, marking may also oc-
cur at different places, possibly even several times.

The classification result may be used several times in the
Diffserv processing path, and it may also depend on ex-
ternal factors (e.g. time), so reproducing the classification
result may not only be expensive, but actually impossible.

We therefore added a new field tc_index to the packet
buffer descriptor (struct sk_buff), where we store the re-
sult of the initial classification. In order to avoid confusing
tc_index with the classifier cls_tcindex, we will call the
former skb->tc_index throughout this document.

skb->tc_index is set using the sch_dsmark queuing dis-
cipline, which is also responsible for initially retrieving the
DSCP, and for setting the DS field in packets before they
are sent on the network. sch_dsmark provides the frame-
work for all other operations.

The cls_tcindex classifier reads all or part of skb->tc_
index and uses this to select classes.

Finally, we need a queuing discipline to support multiple
drop priorities as required for Assured Forwarding. For this,
we designed GRED, a generalized RED. sch_gred provides
a configurable number of drop priorities which are selected
by the lower bits of skb->tc_index.

3.2 Classification and marking

The classifiers c1s_rsvp and cls_u32 can handle all micro-
flow classification tasks. Additionally, the ipchains fire-

Filter ~al ags Queuing discipline
Filter [~ — m
. Class Queuing discipline ——
Filter 7
Queuing discipline
Figure 3: A simple queuing discipline with multiple classes.
Filter nhighu TBF, rate = 1 Mbps :m_»®
- Defudt |, }~{FIF0 _IITF=|+ | - =
Queuing discipline with two delay priorities

Figure 4: Combination of priority, TBF, and FIFO queuing disciplines.

wall is also capable of tagging microflows into classes.
Behavior aggregate classification could also be done us-
ing cls_u32 and ipchains, but since we usually already
have sch_dsmark at the top level, we use the simpler
cls_tcindex and retrieve the DSCP using sch_dsmark,
which then puts it into skb->tc_index.

When using sch_dsmark, the class number returned by
the classifier is stored in skb->tc_index. This way, the
result can be re-used during later processing steps.

Nodes in multiple DS domains must also be able to distin-
guish packets by the inbound interface in order to translate
the DSCP to the correct PHB. This can be done using the
route classifier, in combination with the ip rule command
interface subset.

Marking is done when a packet is dequeued from
sch_dsmark. sch_dsmark uses skb->tc_index as an index
to a table in which the outbound DSCP is stored and puts
this value into the packet’s DS field.

Figure 6 shows the use of sch.dsmark and skb->tc_
index in a micro-flow classifier based on cls_rsvp. Figure
7 shows a behavior aggregate classifier using cls_tcindex.

3.3 Cascaded meters

Multiple meters are needed if traffic should be assigned to
more than two classes, based on the bandwidth it uses. As
an example, such classes could be for “low”, “high”, and
“excess” traffic.

Our current implementation supports a limited form of
cascading at the level of classifiers. We are testing a cleaner
and more efficient solution at the time of writing.

skb->iph->tos

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =
Initial value of tc_index
\ Initial DS field marking —
cls_ [N N J
rsvp
— ——
sch_dsmark
__ tc_inde
may chang
R AR A B =

skb->tc_index

Figure 6: Micro-flow classifier.

3.4 Implementing PHBs

PHBs based only on delay priorities, e.g. Expedited For-
warding [4], can be built using CBQ [5] or the more simple
sch_prio. (See section 5.)

Besides four delay priorities, which can again be imple-
mented with already existing components, Assured For-
warding [6] also needs three drop priorities, which is more
than the current implementation of RED supports. We
therefore added a new queuing discipline which we call

skb->iph->tos

ol =
DS field is used for classification
/ May change DS field —
cls_ PRPaPS

tc

Y i nd
0 index |

A
sch_dsmark

— | tc_index
—~ may change
Yy y Yy Y ,,,,g>

skb->tc_index
Figure 7: Behaviour aggregate classifier.

“generalized RED” (GRED). GRED uses the lower bits
of skb->tc_index to select the drop class and hence the
corresponding set of RED parameters.

3.5 Shaping

The so-called Token Bucket Filter (sch_tbf) can be used
for shaping at edge nodes. Unfortunately, the highest rate
at which sch_tbf can shape is limited by the system timer,
which normally ticks at 100 Hz, but can be accelerated to 1
kHz or more if the processor is sufficiently powerful. Note
that Linux traffic control supports more granular clocking
for droppers (i.e. shapers without buffer).

CBQ can also be used to do shaping.

Higher rates can be shaped when using hardware-based
solutions, such as ATM.

3.6 End systems

Diffserv-capable sources use the same functionality as edge
routers, i.e. any classification and traffic conditioning can
be administratively configured.

In addition to that, an application may also choose to
mark packets when they are generated. For IPv4, this can
be done using the IP_TOS socket option, which is commonly
available on Unix, and of course also on Linux. Note that
Linux follows the [7] convention of not allowing the lowest
bit of the TOS byte to be different from zero. This restric-
tion is compatible with use for Diffserv. Furthermore, the
use of values corresponding to high precedences (i.e. DSCP
0x28 and above) is restricted. This can be avoided either
by giving the application the appropriate capabilities (priv-
ileges), or by re-marking (see below).

Setting the DS field with IPv6 is currently very awkward.
In the future, an improved interface is likely to be provided

that unifies the IPv4 and IPv6 usage and that may contain
additional improvements, e.g. selection of services instead
of “raw” DS field values.

An application’s choice of DS field values can always be
refused or changed by traffic control (using re-marking) be-
fore a packet actually reaches the network.

4 New components

The prototype implementation of Diffserv support requires
the addition of three new traffic control elements to the ker-
nel: (1) the queuing discipline sch_dsmark to extract and
to set the DSCP, (2) the classifier c1s_tcindex which uses
this information, and (3) the queuing discipline sch_gred
which supports multiple drop priorities and buffer sharing.

Only the queueing discipline to extract and set the DSCP
is truly specific to the differentiated services architecture.
The other two elements can also be used in other contexts.

Figure 6 shows the use of sch.dsmark for the initial
packet marking when entering a Diffserv domain. The clas-
sification and rate control metering is performed by a micro-
flow classifier, e.g. cls_rsvp, in this case.

This classifier determines the initial TC index which is
then stored in skb->tc_index. Afterwards, further pro-
cessing is performed by an inner queuing discipline. Note
that this queuing discipline may read and even change
skb->tc_index.

When a packet leaves sch_dsmark, skb->tc_index is ex-
amined and the DS field of the packet is set accordingly.

Figure 7 shows the use of sch_dsmark and cls_tcindex
in a node which works on a behavior aggregate, i.e. on
packets with the DS field already set. The procedure is
quite similar to the previous scenario, with the exception
that cls_tcindex takes over the role of cls_rsvp and that
the DS field of the incoming packet is copied to tc_index
before invoking the classifier.

Note that the value of the outbound DS field can be af-
fected at three locations: (1) in sch_dsmark, when classify-
ing based on skb->tc_index, which contains the original
value of the DS field; (2) by changing skb->tc_index in
an inner queuing discipline; and (3) in sch_dsmark, when
mapping the final value of skb->tc_index back to a new
value of the DS field.

4.1 sch_dsmark

As illustrated in figure 8, the sch_dsmark queuing discipline
performs three actions based on the scripting invocation:

e If set_tc_index is set, it retrieves the content of the
DS field and stores it in skb->tc_index.

e It invokes a classifier and stores the class ID re-
turned in skb->tc_index. If the classifier finds no
match, the value of default_index is used instead. If
default_index is not set, the value of skb->tc_index

is not changed. Note that this can yield undefined be-
haviour if neither set_tc_index nor default_index is
set.

e After sending the packet through its inner queuing dis-
cipline, it uses the resulting value of skb->tc_index
as an index into a table of (mask,value) pairs. The
original value of the DS field is then replaced using the
following formula:
ds_field = (ds_field & mask) | value

Table 4.1 lists the parameters that can be configured in
the dsmark queuing discipline. The upper part of the table
shows parameters of the queuing discipline itself. The lower
part shows parameters of each class.

indices is the size of the table of (mask,value) pairs.

4.2 cls_tcindex

As shown in figure 9, the c1s_tcindex classifier uses skb->
tc_index to select classes. It first calculates the lookup key
using the algorithm

key = (skb->tc_index >> shift) & mask

Then it looks for an entry with this handle. If an entry is
found, it may call a meter (if configured), and it will return
the class IDs of the corresponding class.

If no entry is found, the result depends on whether
fall through is set. If set, a class ID is constructed from
the lookup key. Otherwise, it returns a “not found” in-
dication and the search continues with the next classifier.
We call construction of the class ID an “algorithmic map-
ping”. This can be used to avoid setting up a large number
of classifier elements if there is a sufficiently simple rela-
tion between values of skb->tc_index and class IDs. An
example of this trick is used in the AF scripts on the web
site.

The size of the lookup table can be set using the hash
option. cls_tcindex automatically uses perfect hashing
if the range of possible choices does not exceed the size
of the lookup table. If the hash option is omitted, an
implementation-dependent default value is chosen.

Table 4.2 shows the parameters that can be configured in
the tcindex classifier. The upper part of the table shows
parameters of the classifier itself. The lower part shows
parameters of each element.

Note that the keyword used by tc (the command-line
tool used to manually configure traffic control elements)
does not always correspond to the variable internally used
by cls_tcindex.

4.3 sch_gred

Figure 10 shows how sch_gred uses skb->tc_index for the
selection of the right virtual queue (VQ) within a physical
queue. What makes sch_gred different from other Multi-
RED implementations is the fact that it is decoupled from
any one specific block along the packet’s path such as a

mask shift
skb->
tc_index @
=
|

+/\Key

key class(id) police

key class(id) police

| |—> Profile

. L e : Key
if fall_through

Figure 9: The tcindex classifier.

Class virtual ~ Virtual Queue RED Parameters

queue selector

\\ VQO

T VQ 1
s.:kb—> | .o Class
tc_index | Queue Physical
| VQn packet Queue
|

Packet

-

Drop packet

Figure 10: Generic RED and the use of skb->tc_index

header classifier or meter. For example, CISCO’s DWRED
[8] is tied to mapping VQ selection based on the precedence
bits classification. On the other hand, RIO [9] is tied to
the IN/OUT metering levels for the selection of the VQ.
In the case of GRED, any classifier, meter, etc. along the
data path can affect the selection of the VQ by setting the
appropriate value of skb->tc_index.

GRED also differs from the two mentioned multiple RED
mechanisms in that it is not limited to a specific number of
VQ. The number of VQs is configurable for each physical
class queue. GRED does not assume certain drop prece-
dences (or priorities). It depends on the configuration pa-
rameters passed on by the user. In essence, DWRED and
RIO are special cases of GRED.

Currently, the number of virtual queues is limited to 16
(the least significant 4 bits of skb->tc_index). There is a
one to one mapping between the values of skb->tc_index
and the virtual queue number in a class. Buffer sharing is

skb->iph->tos

e e e e e e e e e T T o ______ L~
Optional: DS field is copied to tc_index
— res.classid contains new tc_index
Filter /
I (&)—~(or)
O Filter classid| Queuing discipline
— ——
Default tc_index is translated to DSCP
™ delfault_index provides tc_index
sch_dsmark / \
! \
Classifier may use tc_index Mask Value
S N r ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -

skb->tc_index

Figure 8: The dsmark queuing discipline.

Variable name / tc keyword

indices
default_index
set_tc_index

mask

value

Value Default
2m none
0...indices-1 | absent
none (flag) absent
0...0xff Oxff
0...0xff 0

Table 1: Configuration parameters of sch_dsmark.

achieved using one of two ways (selectable via configura-
tion):

e Simple setting of physical queue limits. It is up to the
individual configuring the virtual queues parameters
to decide which one gets preferential treatment. Shar-
ing and preferential treatment amongst virtual queues
is based on parameter settings such as the per-virtual
queue physical limit, threshold values and drop prob-
abilities. This is the default setting.

e A similar average queue trick as that is used in [9].
This is selected by the operator grio during the setup.
Each VQ within a class is assigned a priority at con-
figuration time. Priorities range from 1 to 16 at the
moment, with 1 being the highest. The computation of
the average queue value (for a VQ) involves first sum-
ming to the current stored average queue value all the
the other average queue values of the VQs which are
more important than it. This way a relatively higher
priority (lower priority value) gets preferential treat-
ment because its average queue is always the lowest;
the relatively lower priority will still continue to send
when the higher ones are not dominating the buffer
space. A user can still configure the per-virtual-Queue
physical queue limits, threshold values, and drop prob-

abilities as in the (first) case when the grio option is
not defined.

The second scheme is slightly slower than the first one (a
few more per-packet computations).

GRED is configured in two steps. First (see also the up-
per part of table 4.3) the generic parameters are configured
to select the number of virtual queues DPs and whether to
turn on the RIO-like buffer sharing scheme (grio). Also at
this point, a default virtual queue is selected so that pack-
ets with out of range values of skb->tc_index or miscon-
figured priorities in the case of grio buffer-sharing setup
are directed to it. Normally, the default virtual queue is
the one with the highest likelihood of having a packet dis-
carded. The operator setup identifies that this is a generic
setup for GRED.

The second step is to set parameters for individual virtual
queues. (See also the lower part of table 4.3). These param-
eters are equivalent to the traditional RED parameters. In
addition, each RED configuration identifies which virtual
queue the parameters belong to as well as the priority if
the grio technique is selected. The mandatory parameters
are:

e limit defines the virtual queue “physical” limit in

Variable tc keyword Value Default
hash hash 1...0x10000 | implementation-
dependent
mask mask 0. . .0xffff Oxfff
shift shift 0...15 0
fall_through | fall_through/ flag fall_through
pass_on
res classid major: minor none
police police Profile none

Table 2: Configuration parameters of cls_tcindex.

Variable | tc keyword
DPs DPs
def default
grio grio
limit limit

qth_min min

qth_max max
n/a avpkt
n/a bandwidth
n/a burst
n/a probability
DP DP
prio prio

Value Default
1...16 none
1...DPs none
none (flag) | absent
bytes none
bytes none
bytes none
bytes none
rate 10 Mbps
packets none
[0...1) 0.02
1...DPs 0
1...DPs none

Table 3: Configuration parameters of sch_gred.

bytes.

min defines the minimum threshold value in bytes.
max defines the maximum threshold value in bytes.
avpkt is the average packet size in bytes.

bandwidth is the wire-speed of the interface.

burst is the number of average-sized packets allowed
to burst. The Linux RED implementation attempts
to compute an optimal W value for the user based on
the avpkt, minimum threshold and allowed burst size.
This is based on the equation:

gmin _1—-(1- W)burst

burst + 1 — <
urst + avpkt W

as described in [10].

probability defines the drop probability in the range
[0...).

DP identifies the virtual queue assigned to these param-
eters.

prio identifies the virtual queue priority if grio was
set in the general parameters.

Building sample configurations

Communication and configuration of the kernel code or
modules is achieved by a user level program tc written by

tc

Kernel

Figure 11: User space to kernel communication using tc

Alexey. The interaction is shown in figure 5.

Given the flexibility of the code, there are many ways to
reach the same end goal. Depending on the requirement,
one could script the same PHB using a different combi-
nations of qdiscs; e.g. one could build a core EF capable
router using either CBQ to rate limit it and prioritise its
traffic or instead use the PRIO qdisc with a Token Bucket
attached to rate limit it. It is hoped that users of Linux
Diffserv will be able to script their own flavored configura-

tions. The examples below (as well as those on the Linux
Diffserv web site) are simplistic, in the sense that they only
assume one interface per node. One should easily be able
to extend them for more than one interface

The normal recipe for creating a configuration script is:

e attach sch_dsmark to the output interface

e define the structure of the queuing discipline(s) inside
sch_dsmark

e number the classes and decide on a numbering scheme
to use for skb->tc_index (the latter may be trivial if
skb->tc_index is only used within sch_dsmark.)

¢ identify which packets go to which classes and configure
the classifier(s) of sch_dsmark accordingly

The script lines in the next subsections are numbered for
clarity of the accompanying description below.

For clarity, we did not include handling of historical DS
field values in our scripts.

5.1 Edge device: Packet re-marking

. tc qdisc add dev ethO handle 1:0 root dsmark indices 64
. tc class change dev eth0 classid 1:1 dsmark mask 0x3 value 0xb8
. tc class change dev ethO classid 1:2 dsmark mask Ox3 value 0x68
. tc class change dev ethO classid 1:3 dsmark mask Ox3 value 0x48
. tc filter add dev ethQ parent 1:0 protocol ip prio 4 handle 1: u32
divisor 1
filter add dev ethO parent 1:0 protocol ip prio 5 handle 2: u32
divisor 1
7. tc filter add dev ethO parent 1:0 prio 4 u32
match ip dst 10.0.0.0/24
police rate 1Mbit burst 2K continue
flowid 1:1
8. tc filter add dev ethO parent 1:0 prio 5 u32
match ip dst 10.0.0.0/24
flowid 1:2
9. tc filter add dev ethO parent 1:0 prio 4 u32
match ip dst 10.1.0.0/16
match ip src 192.1.0.0/16
match ip protocol 6 Oxff
match ip dport 0x17 Oxffff
flowid 1:3

DB WN -

(=)
ot
a

The first line attaches a dsmarker to the interface eth0
on the root node. The second line instructs the dsmarker
to remark the DSCP of classid 1:2 by first masking out bits
6 and 7 then ORing that with a value of Oxb8. Note that:
This is equivalent to ignoring the ECN bits, and setting the
code point value to 0x2e (which happens to be the DSCP
for EF). In a similar manner, the third line instructs the
dsmarker to remark the CP of classid 1:2 to Oxla (DSCP
for AF31). The fourth line adds a remarking the class 1:3
DSCPs to 0x12 (DSCP for AF21). These three lines in
effect are also registering the classes 1:2, 1:3 and 1:4.

Line 5 adds a u32 classifier with priority of 4. Line 6
adds another classifier of a lower priority. Line 7 maps all
packets with a source IP address of 10.0.0.0/24 to class 1:1.
Line 7 and 8 show how one can attach a meter to a classi-
fier and the reaction to an exceeding of the rate. Basically,
the trick is to define two filters matching the same head-
ers with a higher priority one attached with a meter and
policing action. The operator continue is used to allow a
lookup of the next lower priority matching filter. In this

case, should the metering be exceeded in class 1:1, the flow
is reclassified to class 1:2. Line 9 selects all TCP pack-
ets from source subnet 10.1.1.0/16 destined towards subnet
192.1.1.0/16 and sends them to the queue for class 1:3.

The overall effect is: all packets coming in from source
subnet address 10.0.0.0/24 will get their packets marked
with a DSCP of 0x2e (EF class/PHB) up to a point where
they start exceeding their allocated rate (of 1Mbps and
burst of 2K). In this case, the packets are demoted to class
1:2 where they will be remarked to DSCP 0x18 (AF21).
Any TCP packets of origin subnet 10.1.1.0/16 destination
subnet 192.1.1.0/16 will be remarked to 0x1A (AF22). It is
easy to see that one can build a multi-color marking scheme
of large depths using using such cascading filter/metering
schemes.

5.2 Core device: EF using CBQ

The script below is the output of the EF Perl script on the
Linux Diffserv Web site.

1. tc qdisc add dev ethO handle 1:0 root dsmark indices 64
set_tc_index

2. tc filter add dev ethO parent 1:0 protocol ip prio 1
tcindex mask Oxfc shift 2

3. tc qdisc add dev ethQ parent 1:0 handle 2:0 cbq
bandwidth 10Mbit allot 1514 cell 8 avpkt 1000 mpu 64

4. tc class add dev ethO parent 2:0 classid 2:1 cbq
bandwidth 10Mbit
rate 1500Kbit avpkt 1000 prio 1 bounded isolated
allot 1514 weight 1 maxburst 10 defmap 1

5. tc qdisc add dev ethQ parent 2:1 pfifo limit 5

6. tc filter add dev ethO parent 2:0 protocol ip prio 1
handle Ox2e tcindex classid 2:1 pass_on

7. tc class add dev ethQ parent 2:0 classid 2:2 cbq
bandwidth 10Mbit rate 5Mbit avpkt 1000 prio 7
allot 1514 weight 1 maxburst 21 borrow

8. tc qdisc add dev ethO parent 2:2 red limit 60KB min 15KB
max 45KB burst 20 avpkt 1000 bandwidth 10Mbit
probability 0.4

9. tc filter add dev ethO parent 2:0 protocol ip prio 2
handle O tcindex mask O classid 2:2 pass_on

Line 1 attaches to the root node on interface ethQ a ds-
marker which copies the TOS byte into skb->tc_index.
Line 2 adds a filter to the root node which exists merely
to mask out the ECN bits and extract the DSCP field by
shifting to the right by two bits. A classful qdisc using CBQ
is attached to node 2:0 (2:0 is the child of the root node 1:0)
— this is in line 3. Two child classes are defined out of the
2:0 node. 2:1 is of type CBQ which is bound to a rate of
1.5 Mbps (line 4). A packet counting FIFO qdisc (pfifo)
with a maximum queue size of 5 packets is attached to the
CBQ class as the buffer management scheme (line 5). Line
6 adds a tcindex classifier which will redirect all packets
with a skb->tc_index 0x2e (the DSCP for EF) to clas-
sid 2:1 — non 0x2e are allowed to fall through so they can
be matched by another filter. Line 7 defines another CBQ
class, 2:1, emanating out of node 2:0 — this is intended to
be the Best Effort class. The rate is limited to 5 Mbps;
however, the class is allowed to borrow extra bandwidth if
it is not being used (via the operator borrow). Since the EF
class does not lend its bandwidth (operator isolated line

u32 Meter Class 1:1 DSCP 0x2e
- I—> Class 1:2 DSCP 0x18
Exceeded limit FIFO __ [l
Class 1:3 DSCP Ox1a
— No match =
sch_dsmark (1:0)
Figure 12: Packet re-marking at the edge.
DSCP=0x2E
I
tcinde tcinde Class 2:1 | pFIFO
No match
Class 2:2 |RED 1Y
— ——
CBQ (2:0)

sch_dsmark (1:0)

Figure 13: Configuring EF using CBQ.

4), the BE can only borrow up to a maximum of an extra
3.5Mbps. Note that in scenarios where there is no conges-
tion on the wire, this might not be a very smart provision-
ing scheme since the BE traffic will probably get equivalent
traffic performance as EF. The major differentiator in that
case will be the priorities. The EF class’ traffic will always
be served first as long as there is something on the queue
(prio 1 is higher than prio 8 in comparing line 4 and 7).
Line 8 attaches RED as the buffer management scheme to
be used by the BE class. Line 9 then maps the rest of the
packets (without DSCP of 0x2e) to the classid 2:2. The
description of the RED and CBQ parameters are beyond
the scope of this document.

6 Conclusion

We have given a brief introduction to the elements of Linux
traffic control in general, and we have explained how the
existing infrastructure can be extended in order to support
Diffserv. We have then shown how we implemented sup-
port for the Diffserv architecture in Linux, using the traffic
control framework of recent kernels. We have also described
how nodes can be configured using our work.

Our implementation provides a very flexible platform for
experiments with PHBs already under standardization as

well as experiments with new PHBs. It can also serve as a
platform for work in other areas of Diffserv, such as edge
configuration management and policy management.
Future work will focus on the elimination of a few re-
strictions that still exist in our architecture, and also in the
simplification of the configuration procedures.

References

[1] RFC2475; Blake, Steven; Black, David; Carlson, Mark;
Davies, Elwyn; Wang, Zheng; Weiss, Walter. An Architec-
ture for Differentiated Services, IETF, December 1998.

[2] RFC2474; Nichols, Kathleen; Blake, Steven; Baker, Fred;
Black, David. Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers, IETF, December
1998.

[3] Almesberger, Werner. Linuz Traffic Control — Imple-
mentation Overview, ftp://lrcftp.epfl.ch/pub/people/

almesber/pub/tcio-current.ps.gz, Technical Report
SSC/1998/037, EPFL, November 1998.
[4] RFC2598; Jacobson, Van; Nichols, Kathleen; Poduri,

Kedarnath. An Ezpedited Forwarding PHB, IETF, June
1999.

[6] Floyd, Sally; Jacobson, Van. Link-sharing and Resource
Management Models for Packet Networks, IEEE/ACM

Transactions on Networking, Vol. 3 No. 4, pp. 365-386, Au-
gust 1995.

[6] RFC2597; Heinanen, Juha; Baker, Fred; Weiss, Walter;
Wroclawski, John. Assured Forwarding PHB Group, IETF,
June 1999.

[7] RFC1349; Almquist, Philip. Type of Service in the Internet
Protocol Suite, IETF, July 1992.

[8] CISCO DWRED. Distributed Weighted Random Early
Detection, http://www.cisco.com/univercd/cc/td/doc/
product/software/ios111/ccl11l/wred.htm

[9] Clark, David; Wroclawski, John. An Approach to
Service Allocation in the Internet, Internet Draft
draft-clark-diff-svc-alloc-00.txt, July 1997.

[10] Floyd, Sally; Jacobson, Van. Random Early Detection
Gateways for Congestion Avoidance, IEEE/ACM Transac-
tions on Networking, August 1993.

7 Author’s address

Werner Almesberger

Institute for computer Communications and Applications

Swiss Federal Institute of Technology (EPFL)
CH-1015 Lausanne

Switzerland

email: Werner.Almesberger@epfl.ch

Jamal Hadi Salim

Computing Technology Labs
Nortel Networks

P.0.BOX 3511, Station C
Ottawa, Ontario

Canada K1Y 4H7

email: hadi@nortelnetworks.com

Alexey Kuznetsov

Institute for Nuclear Research (INR)
60th October Anniversary pr. 7a
Moscow 117312

Russia

email: kuznet@ms2.inr.ac.ru

10

