
Di�erentiated Services on Linux

Werner Almesberger Werner�Almesberger�epfl�ch� EPFL ICA

Jamal Hadi Salim hadi�nortelnetworks�com� CTL Nortel Networks

Alexey Kuznetsov kuznet�ms��inr�ac�ru� INR Moscow

June ��� ����

Abstract

Recent Linux kernels o�er a wide variety of tra�c control
functions� which can be combined in a modular way� We
have designed support for Di�erentiated Services based on
the existing tra�c control elements� and we have imple�
mented new components where necessary� In this document
we give a brief overview of the structure of Linux tra�c con�
trol� and we describe our prototype implementation in more
detail�

� Introduction

The Di�erentiated Services architecture �Di�serv� lays the
foundation for implementing service di�erentiation in the
Internet in an e�cient� scalable way� We assume that read�
ers are familiar with the concepts and terminology de�ned
in 	
�� Furthermore� we assume familiarity with the packet
marking as described in 	���
We have developed a design to support basic classi�ca�

tion and DS �eld manipulation required by Di�serv nodes�
The design enables con�guration of the �rst PHBs that are
being de�ned in the Di�serv WG� We have implemented a
prototype of this design using the tra�c control framework
available in recent Linux kernels� The source code� con�g�
uration examples� and related information can be obtained
from http���icawww��epfl�ch�linux�diffserv�

The main focus of our work is to allow maximum 
exibil�
ity for node con�guration and for experiments with PHBs�
while still maintaining a design that does not unnecessarily
sacri�ce performance�
This document is structured as follows� Section � gives a

brief overview of tra�c control functions in recent Linux
kernels� Section � discusses where the existing model
needed to be extended� Section � describes the new com�
ponents in more detail� We conclude with examples of con�
�guration scripts in section ��

� Linux Tra�c Control

Figure 
 shows roughly how the kernel processes data re�
ceived from the network� and how it generates new data to

be sent on the network�

Upper layers (TCP, UDP, ...)

Input de- For- Output

control
Traffic

warding queuingmulti-
plexing

Figure 
� Processing of network data�

�Forwarding� includes the selection of the output inter�
face� the selection of the next hop� encapsulation� etc� Once
all this is done� packets are queued on the respective out�
put interface� This is the point where tra�c control comes
into play� Tra�c control can� among other things� decide
if packets are queued or if they are dropped �e�g� if the
queue has reached some length limit� or if the tra�c ex�
ceeds some rate limit�� it can decide in which order packets
are sent �e�g� to give priority to certain 
ows�� it can delay
the sending of packets �e�g� to limit the rate of outbound
tra�c�� etc�
Once tra�c control has released a packet for sending� the

device driver picks it up and emits it on the network�

��� Components

The tra�c control code in the Linux kernel consists of the
following major conceptual components�

� queuing disciplines
� classes �within a queuing discipline�
� �lters
� policing

Each network device has a queuing discipline associated
with it� which controls how packets enqueued on that de�
vice are treated� A very simple queuing discipline may just
consist of a single queue� where all packets are stored in
the order in which they have been enqueued� and which is
emptied as fast as the respective device can send� See �g�
ure � for such a queuing discipline without externally visible
internal structure�






Queuing discipline

Figure �� A simple queuing discipline without classes�

More elaborate queuing disciplines may use �lters to dis�
tinguish among di�erent classes of packets and process each
class in a speci�c way� e�g� by giving one class priority over
other classes�

Figure � shows an example of such a queuing discipline�
Note that multiple �lters may map to the same class�

Queuing disciplines and classes are intimately tied to�
gether� the presence of classes and their semantics are fun�
damental properties of the queuing discipline� In contrast
to that� �lters can be combined arbitrarily with queuing
disciplines and classes as long as the queuing discipline has
classes to map the packets to� But 
exibility does not end
there yet � classes normally do not take care of storing their
packets themselves� but they use another queuing discipline
to take care of that� That queuing discipline can be arbi�
trarily chosen from the set of available queuing disciplines�
and it may well have classes� which in turn use queuing dis�
ciplines� etc� The term qdisc would be used interchangeably
to mean queueing discipline in this draft�

Figure � shows an example of such a stack� �rst� there is a
queuing discipline with two delay priorities� Packets which
are selected by the �lter go to the high�priority class� while
all other packets go to the low�priority class� Whenever
there are packets in the high�priority queue� they are sent
before packets in the low�priority queue �e�g� the sch prio

queuing discipline works this way�� In order to prevent
high�priority tra�c from starving low�priority tra�c� we
use a token bucket �lter �TBF�� which enforces a rate of at
most 
 Mbps� Finally� the queuing of low�priority packets
is done by a FIFO queuing discipline� Note that there are
other ways to accomplish what we have done here� e�g� by
using class�based queuing �CBQ��

Packets are enqueued as follows� when the enqueue func�
tion of a queuing discipline is called� it scans the �lters until
one of them indicates a match to a class identi�er� It then
queues the packet for the corresponding class� which usually
means to invoke the enqueue function of the queuing disci�
pline �owned� by that class� Packets which do not match
any of the �lters are typically attributed to some default
class�

Typically� each class �owns� one queue� but it is in prin�
ciple also possible that several classes share the same queue
or even that a single queue is used by all classes of the re�
spective queuing discipline� Note� however� that packets do
not carry any explicit indication of which class they were
attributed to� Queuing disciplines that change per�class in�
formation when dequeuing packets �e�g� CBQ� will there�
fore not work properly if the �inner� queues are shared�
unless they are able either to repeat the classi�cation or to

pass the classi�cation result from enqueue to dequeue by
some other means�
Usually when enqueuing packets� the corresponding


ow�s� can be policed� e�g� by discarding packets which
exceed a certain rate�

� Di�serv extensions to Linux traf�

�c control

The tra�c control framework available in recent Linux ker�
nels 	�� already o�ers most of the functionality required for
implementing Di�serv support� We therefore closely fol�
lowed the existing design and added new components only
where it was deemed strictly necessary�

��� Overview

Figure � shows the general structure of the forwarding path
in a Di�serv node�

fier &
Classi-

Meter PHB Marking

Figure �� General Di�serv forwarding path�

Depending on the implementation� marking may also oc�
cur at di�erent places� possibly even several times�
The classi�cation result may be used several times in the

Di�serv processing path� and it may also depend on ex�
ternal factors �e�g� time�� so reproducing the classi�cation
result may not only be expensive� but actually impossible�
We therefore added a new �eld tc index to the packet

bu�er descriptor �struct sk buff�� where we store the re�
sult of the initial classi�cation� In order to avoid confusing
tc index with the classi�er cls tcindex� we will call the
former skb��tc�index throughout this document�
skb��tc�index is set using the sch dsmark queuing dis�

cipline� which is also responsible for initially retrieving the
DSCP� and for setting the DS �eld in packets before they
are sent on the network� sch dsmark provides the frame�
work for all other operations�
The cls tcindex classi�er reads all or part of skb��tc�

index and uses this to select classes�
Finally� we need a queuing discipline to support multiple

drop priorities as required for Assured Forwarding� For this�
we designed GRED� a generalized RED� sch gred provides
a con�gurable number of drop priorities which are selected
by the lower bits of skb��tc�index�

��� Classi�cation and marking

The classi�ers cls rsvp and cls u�	 can handle all micro�

ow classi�cation tasks� Additionally� the ipchains �re�

�



Filter

Filter

Filter

Class

Queuing discipline

Class Queuing discipline

Queuing discipline

Figure �� A simple queuing discipline with multiple classes�

TBF, rate = 1 Mbps

FIFO

Queuing discipline with two delay priorities

Default

Filter "high"

"low"

Figure �� Combination of priority� TBF� and FIFO queuing disciplines�

wall is also capable of tagging micro
ows into classes�
Behavior aggregate classi�cation could also be done us�
ing cls u�	 and ipchains� but since we usually already
have sch dsmark at the top level� we use the simpler
cls tcindex and retrieve the DSCP using sch dsmark�
which then puts it into skb��tc�index�

When using sch dsmark� the class number returned by
the classi�er is stored in skb��tc�index� This way� the
result can be re�used during later processing steps�

Nodes in multiple DS domains must also be able to distin�
guish packets by the inbound interface in order to translate
the DSCP to the correct PHB� This can be done using the
route classi�er� in combination with the ip rule command
interface subset�

Marking is done when a packet is dequeued from
sch dsmark� sch dsmark uses skb��tc�index as an index
to a table in which the outbound DSCP is stored and puts
this value into the packet�s DS �eld�

Figure � shows the use of sch dsmark and skb��tc�

index in a micro�
ow classi�er based on cls rsvp� Figure
� shows a behavior aggregate classi�er using cls tcindex�

��� Cascaded meters

Multiple meters are needed if tra�c should be assigned to
more than two classes� based on the bandwidth it uses� As
an example� such classes could be for �low�� �high�� and
�excess� tra�c�

Our current implementation supports a limited form of
cascading at the level of classi�ers� We are testing a cleaner
and more e�cient solution at the time of writing�

Initial value of tc_index

cls_

rsvp

sch_dsmark

may change
tc_index

skb->iph->tos

skb->tc_index

Initial DS field marking

Figure �� Micro�
ow classi�er�

��� Implementing PHBs

PHBs based only on delay priorities� e�g� Expedited For�
warding 	��� can be built using CBQ 	�� or the more simple
sch prio� �See section ���

Besides four delay priorities� which can again be imple�
mented with already existing components� Assured For�
warding 	�� also needs three drop priorities� which is more
than the current implementation of RED supports� We
therefore added a new queuing discipline which we call

�



sch_dsmark

index

cls_
tc

DS field is used for classification

skb->iph->tos

skb->tc_index

tc_index
may change

May change DS field

Figure �� Behaviour aggregate classi�er�

�generalized RED� �GRED�� GRED uses the lower bits
of skb��tc�index to select the drop class and hence the
corresponding set of RED parameters�

��� Shaping

The so�called Token Bucket Filter �sch tbf� can be used
for shaping at edge nodes� Unfortunately� the highest rate
at which sch tbf can shape is limited by the system timer�
which normally ticks at 
�� Hz� but can be accelerated to 

kHz or more if the processor is su�ciently powerful� Note
that Linux tra�c control supports more granular clocking
for droppers �i�e� shapers without bu�er��
CBQ can also be used to do shaping�
Higher rates can be shaped when using hardware�based

solutions� such as ATM�

��� End systems

Di�serv�capable sources use the same functionality as edge
routers� i�e� any classi�cation and tra�c conditioning can
be administratively con�gured�
In addition to that� an application may also choose to

mark packets when they are generated� For IPv�� this can
be done using the IP TOS socket option� which is commonly
available on Unix� and of course also on Linux� Note that
Linux follows the 	�� convention of not allowing the lowest
bit of the TOS byte to be di�erent from zero� This restric�
tion is compatible with use for Di�serv� Furthermore� the
use of values corresponding to high precedences �i�e� DSCP
�x�� and above� is restricted� This can be avoided either
by giving the application the appropriate capabilities �priv�
ileges�� or by re�marking �see below��
Setting the DS �eld with IPv� is currently very awkward�

In the future� an improved interface is likely to be provided

that uni�es the IPv� and IPv� usage and that may contain
additional improvements� e�g� selection of services instead
of �raw� DS �eld values�
An application�s choice of DS �eld values can always be

refused or changed by tra�c control �using re�marking� be�
fore a packet actually reaches the network�

� New components

The prototype implementation of Di�serv support requires
the addition of three new tra�c control elements to the ker�
nel� �
� the queuing discipline sch dsmark to extract and
to set the DSCP� ��� the classi�er cls tcindex which uses
this information� and ��� the queuing discipline sch gred

which supports multiple drop priorities and bu�er sharing�
Only the queueing discipline to extract and set the DSCP

is truly speci�c to the di�erentiated services architecture�
The other two elements can also be used in other contexts�
Figure � shows the use of sch dsmark for the initial

packet marking when entering a Di�serv domain� The clas�
si�cation and rate control metering is performed by a micro�

ow classi�er� e�g� cls rsvp� in this case�
This classi�er determines the initial TC index which is

then stored in skb��tc�index� Afterwards� further pro�
cessing is performed by an inner queuing discipline� Note
that this queuing discipline may read and even change
skb��tc�index�
When a packet leaves sch dsmark� skb��tc�index is ex�

amined and the DS �eld of the packet is set accordingly�
Figure � shows the use of sch dsmark and cls tcindex

in a node which works on a behavior aggregate� i�e� on
packets with the DS �eld already set� The procedure is
quite similar to the previous scenario� with the exception
that cls tcindex takes over the role of cls rsvp and that
the DS �eld of the incoming packet is copied to tc index

before invoking the classi�er�
Note that the value of the outbound DS �eld can be af�

fected at three locations� �
� in sch dsmark� when classify�
ing based on skb��tc�index� which contains the original
value of the DS �eld� ��� by changing skb��tc�index in
an inner queuing discipline� and ��� in sch dsmark� when
mapping the �nal value of skb��tc�index back to a new
value of the DS �eld�

��� sch dsmark

As illustrated in �gure �� the sch dsmark queuing discipline
performs three actions based on the scripting invocation�

� If set tc index is set� it retrieves the content of the
DS �eld and stores it in skb��tc�index�

� It invokes a classi�er and stores the class ID re�
turned in skb��tc�index� If the classi�er �nds no
match� the value of default index is used instead� If
default index is not set� the value of skb��tc�index

�



is not changed� Note that this can yield unde�ned be�
haviour if neither set tc index nor default index is
set�

� After sending the packet through its inner queuing dis�
cipline� it uses the resulting value of skb��tc�index
as an index into a table of �mask�value� pairs� The
original value of the DS �eld is then replaced using the
following formula�
ds�field 
 �ds�field � mask
 � value

Table ��
 lists the parameters that can be con�gured in
the dsmark queuing discipline� The upper part of the table
shows parameters of the queuing discipline itself� The lower
part shows parameters of each class�
indices is the size of the table of �mask�value� pairs�

��� cls tcindex

As shown in �gure �� the cls tcindex classi�er uses skb��
tc�index to select classes� It �rst calculates the lookup key
using the algorithm
key 
 �skb��tc�index �� shift
 � mask

Then it looks for an entry with this handle� If an entry is
found� it may call a meter �if con�gured�� and it will return
the class IDs of the corresponding class�
If no entry is found� the result depends on whether

fall through is set� If set� a class ID is constructed from
the lookup key� Otherwise� it returns a �not found� in�
dication and the search continues with the next classi�er�
We call construction of the class ID an �algorithmic map�
ping�� This can be used to avoid setting up a large number
of classi�er elements if there is a su�ciently simple rela�
tion between values of skb��tc�index and class IDs� An
example of this trick is used in the AF scripts on the web
site�
The size of the lookup table can be set using the hash

option� cls tcindex automatically uses perfect hashing
if the range of possible choices does not exceed the size
of the lookup table� If the hash option is omitted� an
implementation�dependent default value is chosen�
Table ��� shows the parameters that can be con�gured in

the tcindex classi�er� The upper part of the table shows
parameters of the classi�er itself� The lower part shows
parameters of each element�
Note that the keyword used by tc �the command�line

tool used to manually con�gure tra�c control elements�
does not always correspond to the variable internally used
by cls tcindex�

��� sch gred

Figure 
� shows how sch gred uses skb��tc�index for the
selection of the right virtual queue �VQ� within a physical
queue� What makes sch gred di�erent from other Multi�
RED implementations is the fact that it is decoupled from
any one speci�c block along the packet�s path such as a

*:Key
fall_throughif 

shift

&

mask

key

key

class(id)

class(id) police

police

Profile

Key

Class

tc_index
skb->

Figure �� The tcindex classi�er�

VQ 0

VQ n

VQ 1

Packet

Virtual Queue RED Parameters

Drop packet

Queue
packet Queue

Class
tc_index

queue selector

Physical

Class virtual

skb->

Figure 
�� Generic RED and the use of skb��tc index

header classi�er or meter� For example� CISCO�s DWRED
	�� is tied to mapping VQ selection based on the precedence
bits classi�cation� On the other hand� RIO 	�� is tied to
the IN�OUT metering levels for the selection of the VQ�
In the case of GRED� any classi�er� meter� etc� along the
data path can a�ect the selection of the VQ by setting the
appropriate value of skb��tc�index�

GRED also di�ers from the two mentioned multiple RED
mechanisms in that it is not limited to a speci�c number of
VQ� The number of VQs is con�gurable for each physical
class queue� GRED does not assume certain drop prece�
dences �or priorities�� It depends on the con�guration pa�
rameters passed on by the user� In essence� DWRED and
RIO are special cases of GRED�

Currently� the number of virtual queues is limited to 
�
�the least signi�cant � bits of skb��tc�index�� There is a
one to one mapping between the values of skb��tc�index
and the virtual queue number in a class� Bu�er sharing is

�



Classifier may use tc_index

& or

tc_index is translated to DSCP
default_indexprovides tc_index

classid

Filter

Filter

Default

sch_dsmark

Optional: DS field is copied to tc_index

Queuing discipline

skb->iph->tos

skb->tc_index

ValueMask

res.classid tc_indexcontains new

Figure �� The dsmark queuing discipline�

Variable name � tc keyword Value Default
indices �n none

default�index �� � �indices�
 absent
set�tc�index none �
ag� absent

mask �� � ��x� �x�
value �� � ��x� �

Table 
� Con�guration parameters of sch dsmark�

achieved using one of two ways �selectable via con�gura�
tion��

� Simple setting of physical queue limits� It is up to the
individual con�guring the virtual queues parameters
to decide which one gets preferential treatment� Shar�
ing and preferential treatment amongst virtual queues
is based on parameter settings such as the per�virtual
queue physical limit� threshold values and drop prob�
abilities� This is the default setting�

� A similar average queue trick as that is used in 	���
This is selected by the operator grio during the setup�
Each VQ within a class is assigned a priority at con�
�guration time� Priorities range from 
 to 
� at the
moment� with 
 being the highest� The computation of
the average queue value �for a VQ� involves �rst sum�
ming to the current stored average queue value all the
the other average queue values of the VQs which are
more important than it� This way a relatively higher
priority �lower priority value� gets preferential treat�
ment because its average queue is always the lowest�
the relatively lower priority will still continue to send
when the higher ones are not dominating the bu�er
space� A user can still con�gure the per�virtual�Queue
physical queue limits� threshold values� and drop prob�

abilities as in the ��rst� case when the grio option is
not de�ned�

The second scheme is slightly slower than the �rst one �a
few more per�packet computations��
GRED is con�gured in two steps� First �see also the up�

per part of table ���� the generic parameters are con�gured
to select the number of virtual queues DPs and whether to
turn on the RIO�like bu�er sharing scheme �grio�� Also at
this point� a default virtual queue is selected so that pack�
ets with out of range values of skb��tc�index or miscon�
�gured priorities in the case of grio bu�er�sharing setup
are directed to it� Normally� the default virtual queue is
the one with the highest likelihood of having a packet dis�
carded� The operator setup identi�es that this is a generic
setup for GRED�
The second step is to set parameters for individual virtual

queues� �See also the lower part of table ����� These param�
eters are equivalent to the traditional RED parameters� In
addition� each RED con�guration identi�es which virtual
queue the parameters belong to as well as the priority if
the grio technique is selected� The mandatory parameters
are�

� limit de�nes the virtual queue �physical� limit in

�



Variable tc keyword Value Default
hash hash 
� � ��x
���� implementation�

dependent
mask mask �� � ��x�� �x��
shift shift �� � �
� �

fall�through fall�through� 
ag fall�through

pass�on

res classid major�minor none
police police Pro�le none

Table �� Con�guration parameters of cls tcindex�

Variable tc keyword Value Default
DPs DPs 
� � �
� none
def default 
� � �DPs none
grio grio none �
ag� absent
limit limit bytes none
qth�min min bytes none
qth�max max bytes none
n�a avpkt bytes none
n�a bandwidth rate 
� Mbps
n�a burst packets none
n�a probability 	� � � � 
� ����
DP DP 
� � �DPs �
prio prio 
� � �DPs none

Table �� Con�guration parameters of sch gred�

bytes�
� min de�nes the minimum threshold value in bytes�
� max de�nes the maximum threshold value in bytes�
� avpkt is the average packet size in bytes�
� bandwidth is the wire�speed of the interface�
� burst is the number of average�sized packets allowed
to burst� The Linux RED implementation attempts
to compute an optimal W value for the user based on
the avpkt� minimum threshold and allowed burst size�
This is based on the equation�

burst � 
�
qmin

avpkt
�


� �
�W�burst

W

as described in 	
���
� probability de�nes the drop probability in the range
	� � � ���

� DP identi�es the virtual queue assigned to these param�
eters�

� prio identi�es the virtual queue priority if grio was
set in the general parameters�

	 Building sample con�gurations

Communication and con�guration of the kernel code or
modules is achieved by a user level program tc written by

tc

Kernel

netlink

Figure 

� User space to kernel communication using tc

Alexey� The interaction is shown in �gure ��

Given the 
exibility of the code� there are many ways to
reach the same end goal� Depending on the requirement�
one could script the same PHB using a di�erent combi�
nations of qdiscs� e�g� one could build a core EF capable
router using either CBQ to rate limit it and prioritise its
tra�c or instead use the PRIO qdisc with a Token Bucket
attached to rate limit it� It is hoped that users of Linux
Di�serv will be able to script their own 
avored con�gura�

�



tions� The examples below �as well as those on the Linux
Di�serv web site� are simplistic� in the sense that they only
assume one interface per node� One should easily be able
to extend them for more than one interface
The normal recipe for creating a con�guration script is�

� attach sch dsmark to the output interface
� de�ne the structure of the queuing discipline�s� inside
sch dsmark

� number the classes and decide on a numbering scheme
to use for skb��tc�index �the latter may be trivial if
skb��tc�index is only used within sch dsmark��

� identify which packets go to which classes and con�gure
the classi�er�s� of sch dsmark accordingly

The script lines in the next subsections are numbered for
clarity of the accompanying description below�
For clarity� we did not include handling of historical DS

�eld values in our scripts�

��� Edge device	 Packet re
marking

�� tc qdisc add dev eth� handle ��� root dsmark indices ��
�� tc class change dev eth� classid ��� dsmark mask �x� value �xb	
�� tc class change dev eth� classid ��� dsmark mask �x� value �x�	
�� tc class change dev eth� classid ��� dsmark mask �x� value �x�	

� tc filter add dev eth� parent ��� protocol ip prio � handle �� u��

divisor �
�� tc filter add dev eth� parent ��� protocol ip prio 
 handle �� u��

divisor �
�� tc filter add dev eth� parent ��� prio � u��

match ip dst �����������
police rate �Mbit burst �K continue
flowid ���

	� tc filter add dev eth� parent ��� prio 
 u��
match ip dst �����������
flowid ���


� tc filter add dev eth� parent ��� prio � u��
match ip dst �����������
match ip src �
����������
match ip protocol � �xff
match ip dport �x�� �xffff
flowid ���

The �rst line attaches a dsmarker to the interface eth�
on the root node� The second line instructs the dsmarker
to remark the DSCP of classid 
�� by �rst masking out bits
� and � then ORing that with a value of �xb�� Note that�
This is equivalent to ignoring the ECN bits� and setting the
code point value to �x�e �which happens to be the DSCP
for EF�� In a similar manner� the third line instructs the
dsmarker to remark the CP of classid 
�� to �x
a �DSCP
for AF�
�� The fourth line adds a remarking the class 
��
DSCPs to �x
� �DSCP for AF�
�� These three lines in
e�ect are also registering the classes 
��� 
�� and 
���
Line � adds a u�� classi�er with priority of �� Line �

adds another classi�er of a lower priority� Line � maps all
packets with a source IP address of 
���������� to class 
�
�
Line � and � show how one can attach a meter to a classi�
�er and the reaction to an exceeding of the rate� Basically�
the trick is to de�ne two �lters matching the same head�
ers with a higher priority one attached with a meter and
policing action� The operator continue is used to allow a
lookup of the next lower priority matching �lter� In this

case� should the metering be exceeded in class 
�
� the 
ow
is reclassi�ed to class 
��� Line � selects all TCP pack�
ets from source subnet 
��
�
���
� destined towards subnet

���
�
���
� and sends them to the queue for class 
���
The overall e�ect is� all packets coming in from source

subnet address 
���������� will get their packets marked
with a DSCP of �x�e �EF class�PHB� up to a point where
they start exceeding their allocated rate �of 
Mbps and
burst of �K�� In this case� the packets are demoted to class

�� where they will be remarked to DSCP �x
� �AF�
��
Any TCP packets of origin subnet 
��
�
���
� destination
subnet 
���
�
���
� will be remarked to �x
A �AF���� It is
easy to see that one can build a multi�color marking scheme
of large depths using using such cascading �lter�metering
schemes�

��� Core device	 EF using CBQ

The script below is the output of the EF Perl script on the
Linux Di�serv Web site�

�� tc qdisc add dev eth� handle ��� root dsmark indices ��
set�tc�index

�� tc filter add dev eth� parent ��� protocol ip prio �
tcindex mask �xfc shift �

�� tc qdisc add dev eth� parent ��� handle ��� cbq
bandwidth ��Mbit allot �
�� cell 	 avpkt ���� mpu ��

�� tc class add dev eth� parent ��� classid ��� cbq
bandwidth ��Mbit
rate �
��Kbit avpkt ���� prio � bounded isolated
allot �
�� weight � maxburst �� defmap �


� tc qdisc add dev eth� parent ��� pfifo limit 

�� tc filter add dev eth� parent ��� protocol ip prio �

handle �x�e tcindex classid ��� pass�on
�� tc class add dev eth� parent ��� classid ��� cbq

bandwidth ��Mbit rate 
Mbit avpkt ���� prio �
allot �
�� weight � maxburst �� borrow

	� tc qdisc add dev eth� parent ��� red limit ��KB min �
KB
max �
KB burst �� avpkt ���� bandwidth ��Mbit
probability ���


� tc filter add dev eth� parent ��� protocol ip prio �
handle � tcindex mask � classid ��� pass�on

Line 
 attaches to the root node on interface eth� a ds�
marker which copies the TOS byte into skb��tc�index�
Line � adds a �lter to the root node which exists merely
to mask out the ECN bits and extract the DSCP �eld by
shifting to the right by two bits� A classful qdisc using CBQ
is attached to node ��� ���� is the child of the root node 
���
� this is in line �� Two child classes are de�ned out of the
��� node� ��
 is of type CBQ which is bound to a rate of

�� Mbps �line ��� A packet counting FIFO qdisc �pfifo�
with a maximum queue size of � packets is attached to the
CBQ class as the bu�er management scheme �line ��� Line
� adds a tcindex classi�er which will redirect all packets
with a skb��tc�index �x�e �the DSCP for EF� to clas�
sid ��
 � non �x�e are allowed to fall through so they can
be matched by another �lter� Line � de�nes another CBQ
class� ��
� emanating out of node ��� � this is intended to
be the Best E�ort class� The rate is limited to � Mbps�
however� the class is allowed to borrow extra bandwidth if
it is not being used �via the operator borrow�� Since the EF
class does not lend its bandwidth �operator isolated line

�



Class 1:1

Class 1:2

Class 1:3
FIFO

DSCP 0x2e

DSCP 0x18

DSCP 0x1a

u32 Meter

No match

Exceeded limit

sch_dsmark (1:0)

Figure 
�� Packet re�marking at the edge�

pFIFO

RED

Class 2:1

Class 2:2
No match

CBQ (2:0)

sch_dsmark (1:0)

tcindextcindex

DSCP=0x2E

Figure 
�� Con�guring EF using CBQ�

��� the BE can only borrow up to a maximum of an extra
���Mbps� Note that in scenarios where there is no conges�
tion on the wire� this might not be a very smart provision�
ing scheme since the BE tra�c will probably get equivalent
tra�c performance as EF� The major di�erentiator in that
case will be the priorities� The EF class� tra�c will always
be served �rst as long as there is something on the queue
�prio 
 is higher than prio � in comparing line � and ���
Line � attaches RED as the bu�er management scheme to
be used by the BE class� Line � then maps the rest of the
packets �without DSCP of �x�e� to the classid ���� The
description of the RED and CBQ parameters are beyond
the scope of this document�


 Conclusion

We have given a brief introduction to the elements of Linux
tra�c control in general� and we have explained how the
existing infrastructure can be extended in order to support
Di�serv� We have then shown how we implemented sup�
port for the Di�serv architecture in Linux� using the tra�c
control framework of recent kernels� We have also described
how nodes can be con�gured using our work�

Our implementation provides a very 
exible platform for
experiments with PHBs already under standardization as

well as experiments with new PHBs� It can also serve as a
platform for work in other areas of Di�serv� such as edge
con�guration management and policy management�

Future work will focus on the elimination of a few re�
strictions that still exist in our architecture� and also in the
simpli�cation of the con�guration procedures�

References

��� RFC����� Blake	 Steven� Black	 David� Carlson	 Mark�
Davies	 Elwyn� Wang	 Zheng� Weiss	 Walter
 An Architec�
ture for Di�erentiated Services	 IETF	 December ����


��� RFC����� Nichols	 Kathleen� Blake	 Steven� Baker	 Fred�
Black	 David
 De�nition of the Di�erentiated Services Field
�DS Field� in the IPv� and IPv� Headers	 IETF	 December
����


�
� Almesberger	 Werner
 Linux Tra�c Control 	 Imple�
mentation Overview	 ftp���lrcftp�epfl�ch�pub�people�
almesber�pub�tcio�current�ps�gz	 Technical Report
SSC�������
�	 EPFL	 November ����


��� RFC����� Jacobson	 Van� Nichols	 Kathleen� Poduri	
Kedarnath
 An Expedited Forwarding PHB	 IETF	 June
����


��� Floyd	 Sally� Jacobson	 Van
 Link�sharing and Resource
Management Models for Packet Networks	 IEEE�ACM

�



Transactions on Networking	 Vol
 
 No
 �	 pp
 
���
��	 Au�
gust ����


��� RFC����� Heinanen	 Juha� Baker	 Fred� Weiss	 Walter�
Wroclawski	 John
 Assured Forwarding PHB Group	 IETF	
June ����


��� RFC�
��� Almquist	 Philip
 Type of Service in the Internet
Protocol Suite	 IETF	 July ����


��� CISCO DWRED
 Distributed Weighted Random Early
Detection	 http���www�cisco�com�univercd�cc�td�doc�

product�software�ios����cc����wred�htm

��� Clark	 David� Wroclawski	 John
 An Approach to
Service Allocation in the Internet	 Internet Draft
draft�clark�diff�svc�alloc����txt	 July ����


���� Floyd	 Sally� Jacobson	 Van
 Random Early Detection
Gateways for Congestion Avoidance	 IEEE�ACM Transac�
tions on Networking	 August ���



� Author�s address

Werner Almesberger
Institute for computer Communications and Applications
Swiss Federal Institute of Technology �EPFL�
CH�
�
� Lausanne
Switzerland
email� Werner�Almesberger�ep
�ch

Jamal Hadi Salim
Computing Technology Labs
Nortel Networks
P�O�BOX ��

� Station C
Ottawa� Ontario
Canada K
Y �H�
email� hadi�nortelnetworks�com

Alexey Kuznetsov
Institute for Nuclear Research �INR�
��th October Anniversary pr� �a
Moscow 

��
�
Russia
email� kuznet�ms��inr�ac�ru


�


